Perception & Psychophysics

, Volume 63, Issue 3, pp 490–500 | Cite as

The influence of color on transient system activity: Implications for dyslexia research

General Articles

Abstract

University of Wollongong, Wollongong, New South Wales, Australia Metacontrast and apparent motion experiments designed to utilize transient system resources were adopted to investigate the proposal that transient system activity is differentially influenced by different colored stimuli. The results generally showed no effect of color on transient system activity in either adults or children. However, the predicted pattern of results was demonstrated when contrast rather than color was manipulated in a final metacontrast experiment. We discuss the tenuousness of the proposal that color differentially influences transient activity, exploring its physiological implications and its durability as a theory of transient activity regarding reading-disability research.

References

  1. Alpern, M. (1953). Metacontrast.Journal of the Optical Society of America,43, 648–657.PubMedCrossRefGoogle Scholar
  2. Arand, D., &Dember, W. M. (1978). The effect of luminance on metacontrast with internally contoured targets.Bulletin of the Psychonomic Society,11, 57–59.Google Scholar
  3. Bernstein, I. H., Proctor, R. W., Belcher, J., &Schurman, D. L. (1974). An analysis of U-shaped metacontrast.Perception & Psychophysics,16, 329–336.Google Scholar
  4. Brannan, J., &Williams, M. (1988). The effects of age and reading ability on flicker thresholds.Clinical Vision Sciences,3, 137–142.Google Scholar
  5. Breitmeyer, B. G. (1978). Disinhibition in metacontrast masking of vernier acuity targets: Sustained channels inhibit transient channels.Vision Research,18, 1401–1405.PubMedCrossRefGoogle Scholar
  6. Breitmeyer, B. G. (1984).Visual masking: An integrative approach. New York: Oxford University Press.Google Scholar
  7. Breitmeyer, B. G., &Breier, J. (1993). Effects of background color on reaction time to stimuli varying in size and contrast: Inferences about human M channels.Vision Research,34, 1039–1045.CrossRefGoogle Scholar
  8. Breitmeyer, B. G., May, J. G., &Heller, S. S. (1991). Metacontrast reveals asymmetries at red-green isoluminance.Journal of the Optical Society of America,8, 1324–1329.CrossRefGoogle Scholar
  9. Breitmeyer, B. G., &Williams, M. (1990). Effects of isoluminant-background color on metacontrast and stroboscopic motion: Interactions between sustained (P) and transient (M) channels.Vision Research,30, 1069–1075.PubMedCrossRefGoogle Scholar
  10. Burr, D. (1984). Summation of target and mask metacontrast stimuli.Perception,13, 183–192.PubMedCrossRefGoogle Scholar
  11. Cornelissen, P., Richardson, A., Mason, A., Fowler, S., &Stein, F. (1995). Contrast sensitivity and coherent motion detection measured at photopic luminance levels in dyslexics and controls.Vision Research,35, 1483–1494.PubMedCrossRefGoogle Scholar
  12. Cox, S. I., &Dember, W. N. (1971). Effects of target-field luminance, interstimulus interval, and target-mask separation on extent of visual backward masking.Psychonomic Science,22, 79–80.Google Scholar
  13. Di Lollo, V., Bischof, W. F., &Dixon, P. (1993). Stimulus-onset asynchrony is not necessary for motion perception or metacontrast masking.Psychological Science,4, 260–263.CrossRefGoogle Scholar
  14. Edwards, V. T., Hogben, J. H., Clark, C. D., &Pratt, C. (1996). Effects of a red background on magnocellular functioning in average and specif ically disabled readers.Vision Research,36, 1037–1045.PubMedCrossRefGoogle Scholar
  15. Fehrer, E., &Smith.E. (1962). Effect of luminance ratio on masking.Perceptual & Motor Skills,14, 143–153.CrossRefGoogle Scholar
  16. Francis, G. (1997). Cortical dynamics of lateral inhibition: Metacontrast masking.Psychological Review,104, 572–594.PubMedCrossRefGoogle Scholar
  17. Frumkes, T., Sekuler, M., Barris, M., Reiss, E., &Chalupa, L. (1973). Rod-cone interaction in human scotopic vision: I. Temporal analysis.Vision Research,13, 1269–1282.PubMedCrossRefGoogle Scholar
  18. Greer, A., & Williams, M. (1995, April).Visual timing and wavelength effects in dyslexic and normal children. Paper presented at the meeting of the Society for Research in Child Development, Indianapolis.Google Scholar
  19. Gross-Glenn, K., Skottun, B. C., Kushch, A., Lingua, R., Dunbar, M., Jallad, B., Lubs, H. A., Levin, B., Rabin, M., Parke, L., &Duara, R. (1995). Contrast sensitivity in dyslexia.Visual Neuroscience,12, 153–163.PubMedCrossRefGoogle Scholar
  20. Harris, J. P., Makepeace, A. P., &Troscianko.T. S. (1987). Cathode ray tubes displays in psychophysical research.Journal of Psychophysiology,4, 413–429.Google Scholar
  21. Hicks, T. P., Lee, B. B., &Vidyasager, T. R. (1983). The responses of cells in macaque lateral geniculate nucleus to sinusoidal gratings.Journal of Physiology,337, 183–200.PubMedGoogle Scholar
  22. Hogben, J. H. (1996). A plea for purity.Australian Journal of Psychology,48, 127–177.CrossRefGoogle Scholar
  23. Hogben, J. H., &Di Lollo, V. (1984). Practice reduces suppression in metacontrast and in apparent motion.Perception & Psychophysics,35, 441–445.Google Scholar
  24. Irlen, H. (1983).Scotopic sensitivity and reading disability. Paper presented at the 91st Annual Convention of the American Psychological Association, Anaheim.Google Scholar
  25. Kremers, J., Lee, B. B., &Kaiser, P. K. (1992). Sensitivity of macaque retinal ganglion cells and human observers to combined luminance and chromatic temporal modulation.Journal of the Optical Society of America,9, 1477–1485.PubMedCrossRefGoogle Scholar
  26. Kruger, J. (1979). Responses to wavelength contrast in the afferent visual systems of the cat and the rhesus monkey.Vision Research,19, 1351–1358.PubMedCrossRefGoogle Scholar
  27. Lee, B. B., Martin, P. R., &Valberg, A. (1989). Nonlinearity of summation of M- and L-cone inputs to phasic retinal ganglion cells of the macaque.Journal of Neuroscience,9, 1433–1442.PubMedGoogle Scholar
  28. Lee, B. B., Pokorny, J., Smith, V. C., Martin, P. R., &Valberg, A. (1990). Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers.Journal of the Optical Society of America,7, 2223–2236.PubMedCrossRefGoogle Scholar
  29. Lefton, L. A. (1973). Spatial factors in metacontrast.Perception & Psychophysics,14, 497–500.Google Scholar
  30. Lefton, L. A., &Newman, Y. (1976). Metacontrast and paracontrast: Both photopic and scotopic luminance levels yield monotones.Bulletin of the Psychonomic Society,8, 435–438.Google Scholar
  31. Legge, G. E., &Rubin.G. S. (1986). Psychophysics of reading. IV. Wavelength effects in normal and low vision.Journal of the Optical Society of America,3, 40–51.PubMedCrossRefGoogle Scholar
  32. Lehmkuhle, S., Garzia, R., Turner, L., Hash, T., &Baro, J. (1993). A defective visual pathway in children with reading disability.New England Journal of Medicine,328, 989–996.PubMedCrossRefGoogle Scholar
  33. Lennie, P. (1980). Parallel visual pathways: A review.Vision Research,20, 561–594.PubMedCrossRefGoogle Scholar
  34. Livingstone, M. S., &Hubel, D. H. (1987). Psychophysical evidence for separate channels for the perception of form, color, movement and depth.Journal of Neuroscience,7, 3416–3468.PubMedGoogle Scholar
  35. Livingstone, M. S., Rosen, G. D., Drislane, F. W., &Galaburda, A. M. (1991). Physiological and anatomical evidence for a magnocellular defect in developmental dyslexia.Proceedings of the National Academy of Sciences,88, 7943–7947.CrossRefGoogle Scholar
  36. Lovegrove, W., Bowling, A., Badcock, D., &Blackwood, M. (1980). Specific reading disability: Differences in contrast sensitivity as a function of spatial frequency.Science,210, 439–440.PubMedCrossRefGoogle Scholar
  37. Lovegrove, W., &Williams, M. (1993). Visual temporal processing deficits in specif ic reading disability. In D. Willows., R. Kruk, & E. Corcos (Eds.),Visual processes in reading and reading disabilities (pp. 311–329). Hillsdale, NJ: Erlbaum.Google Scholar
  38. Martin, F., &Lovegrove, W. (1987). Flicker contrast sensitivity in normal and specifically disabled readers.Perception,16, 215–221.PubMedCrossRefGoogle Scholar
  39. May, J., Dunlap, W., &Lovegrove, W. (1992). Factor scores derived from visual evoked potential latencies differentiate good and poor readers.Clinical Vision Sciences,7, 67–70.Google Scholar
  40. May, J., Lovegrove, W., Martin, F., &Nelson, W. (1991). Patternelicited visual evoked potentials in good and poor readers.Clinical Vision Sciences,7, 67–70.Google Scholar
  41. Merikle, P. (1977). On the nature of metacaontrast—With complex targets and masks.Journal of Experimental Psychology: Human Perception & Performance,3, 607–621.CrossRefGoogle Scholar
  42. Pammer, K., & Lovegrove, W. A. (2000).A psychophysical study of the influence of color displays on the transient visual pathway. Manuscript submitted for publication.Google Scholar
  43. Proctor, R. W., Nunn, M. B., &Pallos, I. (1983). The influence of metacontrast masking on detection and spatial-choice judgments: An apparent distinction between automatic and attentive response mechanisms.Journal of Experimental Psychology: Human Perception & Performance,9, 278–287.CrossRefGoogle Scholar
  44. Reeves, A. (1986). Pathways in Type-B (U-shaped) metacontrast.Perception,15, 163–172.PubMedCrossRefGoogle Scholar
  45. Saugstad, P., &Saugstad, A. (1959). The duplicity theory: An evaluation.Advances in Ophthalmology,9, 1–51.Google Scholar
  46. Schiller, P. H. (1966). Forward and backward masking as a function of relative overlap and intensity of test and masking stimuli.Perception & Psychophysics,1, 161–164.Google Scholar
  47. Sekuler, R., &Blake, R. (1985).Perception. New York: Knopf.Google Scholar
  48. Slaghuis, W., &Lovegrove, W. (1985). Spatial frequency mediated visible persistence and specif ic reading disability.Brain & Cognition,4, 219–240.CrossRefGoogle Scholar
  49. Slaghuis, W., Twell, A. J., &Kingstone, K. R. (1996). Visual and language processing disorders are concurent in dyslexia and continue into adulthood.Cortex,32, 413–438.PubMedGoogle Scholar
  50. Solman, R., Cho, H. S., &Dain, S. (1991). Colour-mediated grouping effects in good and disabled readers.Ophthalmic & Physiological Optics,11, 320–327.CrossRefGoogle Scholar
  51. Stabell, B., &Stabell, U. (1976). Rod and cone contributions to peripheral colour vision.Vision Research,16, 1099–1104.PubMedCrossRefGoogle Scholar
  52. Travis, D. (1991).Effective colour displays; Theory and practice. Cambridge: Cambridge University Press.Google Scholar
  53. Turvey, M. T. (1973). On peripheral and central processes in vision: Inferences from an information-processing analysis of masking with patterned stimuli.Psychological Review,80, 1–52.PubMedCrossRefGoogle Scholar
  54. Uttal, W. R. (1970). On the physiological basis of masking with dotted visual noise.Perception & Psychophysics,7, 321–327.Google Scholar
  55. Vidyasagar, T. R., &Pammer, K. (1999). Impaired visual search in dyslexia relates to the role of the magnocellular pathway in attention.NeuroReport,10, 1–5.CrossRefGoogle Scholar
  56. Vienot, F., &Chiron, A. (1992). Brightness matching and flicker photometric data obtained over the full mesopic range.Vision Research,32, 533–540.PubMedCrossRefGoogle Scholar
  57. Walther-Müller.P. U. (1995). Is there a deficit of early vision in dyslexia?Perception,24, 919–936.PubMedCrossRefGoogle Scholar
  58. Wiesel, T. N., &Hubel, D. H. (1966). Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey.Journal of Neurophysiology,29, 1115–1156.PubMedGoogle Scholar
  59. Wilkins, A. J., Milroy, R., Nimmo-Smith, I., Wright, A., Tyrrell, R., Holland, K., Martin, J., Bald, J., Yale, S., Miles, T., &Noakes, T. (1992). Preliminary observations concerning treatment of visual discomfort and associated perceptual distortion.Ophthalmic & Physiological Optics,12, 257–263.CrossRefGoogle Scholar
  60. Williams, M., Breitmeyer, B., Lovegrove, W., &Gutierrez, C. (1991). Metacontrast with masks varying in spatial frequency and wavelength.Vision Research,31, 2017–2023.PubMedCrossRefGoogle Scholar
  61. Williams, M., &LeCluyse, K. (1990). Perceptual consequences of a temporal processing deficit in reading disabled children.Journal of the American Optometric Association,61, 111–121.PubMedGoogle Scholar
  62. Williams, M., LeCluyse, K., &Bologna, N. (1990). Masking by light as a measure of visual integration time and persistence in normal and disabled readers.Clinical Vision Sciences,5, 335–343.Google Scholar
  63. Williams, M., LeCluyse, K., &Rock-Faucheux, A. (1992). Effective interventions for reading disability.Journal of the American Optometric Association,63, 411–417.PubMedGoogle Scholar
  64. Williams, M., &Lovegrove, W. (1992). Sensory and perceptual processes in reading disability. In J. Brannan (Ed.),Applications of parallel processing in vision (pp. 263–302). New York: Elsevier.Google Scholar
  65. Williams, M., Molinet, K., &LeCluyse, K. (1989). Visual masking as a measure of temporal processing in normal and disabled readers.Clinical Vision Sciences,4, 137–144.Google Scholar

Copyright information

© Psychonomic Society, Inc. 2001

Authors and Affiliations

  1. 1.University of WollongongWollongongAustralia
  2. 2.DVC UnitGriffith UniversityBrisbaneAustralia
  3. 3.Department of PsychologyUniversity of NewcastleNewcastle-upon-TyneEngland

Personalised recommendations