Advertisement

Psychonomic Bulletin & Review

, Volume 13, Issue 2, pp 179–200 | Cite as

Weaving the fabric of social interaction: Articulating developmental psychology and cognitive neuroscience in the domain of motor cognition

  • Jessica A. Sommerville
  • Jean Decety
Theoretical and Review Articles

Abstract

In this article, we bring together recent findings from developmental science and cognitive neuroscience to argue that perception-action coupling constitutes the fundamental mechanism of motor cognition. A variety of empirical evidence suggests that observed and executed actions are coded in a common cognitive and neural framework, enabling individuals to construct shared representations of self and other actions. We review work to suggest that such shared representations support action anticipation, organization, and imitation. These processes, along with additional computational mechanisms for determining a sense of agency and behavioral regulation, form the fabric of social interaction. In addition, humans possess the capacity to move beyond these basic aspects of action analysis to interpret behavior at a deeper level, an ability that may be outside the scope of the mirror system. Understanding the nature of shared representations from the vantage point of developmental and cognitive science and neuroscience has the potential to inform a range of motor and social processes. This perspective also elucidates intriguing new directions and research questions and generates specific hypotheses regarding the impact of early disorders (e.g., developmental movement disorders) on subsequent action processing.

Keywords

Parietal Cortex Motor Imagery Mirror Neuron Premotor Cortex Inferior Parietal Lobule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agnetta, B., &Rochat, P. (2004). Imitative games by 9-, 14-, and 18-month-old infants.Infancy,6, 1–36.Google Scholar
  2. Allen, G., &Courchesne, E. (2003). Differential effects of developmental cerebellar abnormality on cognitive and motor functions in the cerebellum: An fMRI study of autism.American Journal of Psychiatry,160, 262–273.PubMedGoogle Scholar
  3. Andersen, R. A., Essick, G. K., &Siegel, R. M. (1985). Encoding of spatial location by posterior parietal neurons.Science,230, 456–458.PubMedGoogle Scholar
  4. Asendorpf, J. B., Warkentin, V., &Baudonniere, P. (1988). Selfawareness and other-awareness: II. Mirror self-recognition, social contingency awareness, and synchronic imitation.Developmental Psychology,32, 313–321.Google Scholar
  5. Avikainen, S., Kulomaki, T., &Hari, R. (1999). Normal movement reading in Asperger subjects.NeuroReport,26, 3467–3470.Google Scholar
  6. Baird, J. A., &Baldwin, D. A. (2001). Making sense of human behavior: Action parsing and intentional inferences. In B. F. Malle, L. J. Moses, & D. A. Baldwin (Eds.),Intentions and intentionality (pp. 193–206). Cambridge, MA: MIT Press.Google Scholar
  7. Baldwin, D. A., Baird, J. A., Saylor, M. M., &Clark, M. A. (2001). Infants parse dynamic action.Child Development,72, 708–717.PubMedGoogle Scholar
  8. Baron-Cohen, S. (1995).Mindblindness: An essay on autism and theory of mind. Cambridge, MA: MIT Press.Google Scholar
  9. Barsalou, L. W. (1999). Perceptual symbol systems.Behavioral & Brain Sciences,22, 577–660.Google Scholar
  10. Barsalou, L. W. (2003). Situated simulation in the human conceptual system.Language & Cognitive Processes,18, 513–562.Google Scholar
  11. Barsalou, L. W., Niedenthal, P. M., Barbey, A. K., &Ruppert, J. A. (2003). Social embodiment. In B. H. Ross (Ed.),The psychology of learning and motivation: Advances in research and theory (Vol.43, pp. 43–92). San Diego: Academic Press.Google Scholar
  12. Barsalou, L. W., Simmons, W. K., Barbey, A. K., &Wilson, C. D. (2003). Grounding conceptual knowledge in modality-specific systems.Trends in Cognitive Sciences,7, 84–91.PubMedGoogle Scholar
  13. Bartsch, K., &Wellman, H. M. (1995).Children talk about the mind. Oxford: Oxford University Press.Google Scholar
  14. Bedon, B. G., &Howard, D. V. (1992). Memory for the frequency of occurrence of karate techniques: A comparison of experts and novices.Bulletin of the Psychonomic Society,30, 117–119.Google Scholar
  15. Bekkering, H., Wohlschläger, A., &Gattis, M. (2000). Imitation of gestures in children is goal-directed.Quarterly Journal of Experimental Psychology,53A, 153–164.Google Scholar
  16. Berlucchi, G., &Aglioti, S. (1997). The body in the brain: Neural bases of corporeal awareness.Trends in Neurosciences,20, 560–564.PubMedGoogle Scholar
  17. Berry, D. S., &Springer, K. (1993). Structure, motion and preschoolers’ perception of causality.Ecological Psychology,5, 273–283.Google Scholar
  18. Blakemore, S. J., &Decety, J. (2001). From the perception of action to the understanding of intention.Nature Reviews Neuroscience,2, 561–567.PubMedGoogle Scholar
  19. Blakemore, S. J., &Frith, C. D. (2005). The role of motor contagion in the prediction of action.Neuropsychologia,43, 260–267.PubMedGoogle Scholar
  20. Blanke, O., Landis, T., Spinelli, L., &Seeck, M. (2004). Out-ofbody experience and autoscopy of neurological origin.Brain,127, 243–258.PubMedGoogle Scholar
  21. Blanke, O., Ortigue, S., Landis, T., &Seeck, M. (2002). Stimulating illusory own-body perceptions.Nature,419, 269–270.PubMedGoogle Scholar
  22. Brass, M., Bekkering, H., &Prinz, W. (2001). Movement observation affects movement execution in a simple response task.Acta Psychologica,106, 3–22.PubMedGoogle Scholar
  23. Brass, M., Bekkering, H., Wohlschläger, A., &Prinz, W. (2000). Compatibility between observed and executed finger movements: Comparing symbolic, spatial, and imitative cues.Brain & Cognition,44, 124–143.Google Scholar
  24. Buccino, G., Binkofski, F., &Riggio, L. (2001). The mirror neuron system and action recognition.Brain & Language,89, 370–376.Google Scholar
  25. Buccino, G., Lui, F., Canessa, N., Pastteri, I., Lagravinese, G., Benuzzi, F., et al. (2004). Neural circuits involved in the recognition of actions performed by nonconspecifics: An fMRI study.Journal of Cognitive Neuroscience,16, 114–126.PubMedGoogle Scholar
  26. Buccino, G., Vogt, S., Ritzl, A., Fink, G. R., Zilles, K., Freund, H. J., &Rizzolatti, G. (2004). Neural circuits underlying imitation learning of hand actions: An event-related fMRI study.Neuron,22, 323–334.Google Scholar
  27. Byrne, R. W. (2003). Imitation as behaviour parsing.Philosophical Transactions of the Royal Society of London: Series B,358, 529–536.Google Scholar
  28. Byrne, R. W. (2005). Social cognition: Imitation, imitation, imitation.Current Biology,15, R498-R500.PubMedGoogle Scholar
  29. Calvo-Merino, B., Glaser, D. E., Grèzes, J., Passingham, R. E., &Haggard, P. (2005). Action observation and acquired motor skills: An fMRI study with expert dancers.Cerebral Cortex,15, 1243–1249.PubMedGoogle Scholar
  30. Carpenter, M., Call, J., &Tomasello, M. (2002). Understanding “prior intentions” enables two-year-olds to imitatively learn a complex task.Child Development,73, 1431–1441.PubMedGoogle Scholar
  31. Carpenter, M., Call, J., &Tomasello, M. (2005). Twelve- and 18-month-olds copy actions in terms of goals.Developmental Science,8, F13-F20.PubMedGoogle Scholar
  32. Carr, L., Iacoboni, M., Dubeau, M.-C., Mazziotta, J. C., &Lenzi, G. L. (2003). Neural mechanisms of empathy in humans: A relay from neural systems for imitation to limbic areas.Proceedings of the National Academy of Sciences,100, 5497–5502.Google Scholar
  33. Castiello, U. (2003). Understanding other people’s actions: Intention and attention.Journal of Experimental Psychology: Human Perception & Performance,29, 416–430.Google Scholar
  34. Castiello, U., Lusher, D., Mari, M., Edwards, M., &Humphreys, G. W. (2002). Observing a human or a robotic hand grasping an object: Differential motor priming effects. In W. Prinz & B. Hommel (Eds.),Common mechanisms in perception and action (pp. 315–333). New York: Oxford University Press.Google Scholar
  35. Chaminade, T., &Decety, J. (2002). Leader or follower? Involvement of the inferior parietal lobule in agency.NeuroReport,13, 1975–1978.PubMedGoogle Scholar
  36. Chaminade, T., Meary, D., Orliaguet, J. P., &Decety, J. (2001). Is perceptual anticipation a motor simulation? A PET study.NeuroReport,12, 3669–3674.PubMedGoogle Scholar
  37. Chaminade, T., Meltzoff, A. N., &Decety, J. (2002). Does the end justify the means? A PET exploration of the mechanisms involved in human imitation.NeuroImage,15, 318–328.PubMedGoogle Scholar
  38. Chao, L. L., &Martin, A. (2000). Representation of manipulable manmade objects in the dorsal stream.NeuroImage,12, 478–484.PubMedGoogle Scholar
  39. Chartrand, T. L., &Bargh, J. A. (1999). The chameleon effect: The perception-behavior link and social interaction.Journal of Personality & Social Psychology,76, 893–910.Google Scholar
  40. Chiron, C., Jambaque, J., Nabbout, R., Lounes, R., Syrota, A., &Dulac, O. (1997). The right brain hemisphere is dominant in human infants.Brain,120, 1057–1065.PubMedGoogle Scholar
  41. Chiron, C., Raynaud, C., Mazière, B., Zilbovicius, M., Laflamme, L., Masure, M. C., et al. (1992). Changes in regional cerebral blood flow during brain maturation in children and adolescents.Journal of Nuclear Medicine,33, 696–703.PubMedGoogle Scholar
  42. Clark, S., Tremblay, F., &Ste-Marie, D. (2004). Differential modulation of corticospinal excitability during observation, mental imagery and imitation of hand actions.Neuropsychologia,42, 105–112.PubMedGoogle Scholar
  43. Claxton, L. J., Keen, R., &McCarty, M. E. (2003). Evidence of motor planning in infant reaching behavior.Psychological Science,14, 354–356.PubMedGoogle Scholar
  44. Collie, R., &Hayne, H. (1999). Deferred imitation by 6- and 9-monthold infants: More evidence for declarative memory.Developmental Psychobiology,35, 83–90.PubMedGoogle Scholar
  45. Courchesne, E., Yeung-Courchesne, R., Press, R., Hesseline, J. R., &Jernigan, T. L. (1988). Hypoplasia of cerebellar vermal lobules VI and VII in autism.New England Journal of Medicine,318, 1349–1354.PubMedGoogle Scholar
  46. D’Andrade, R. (1987). A folk model of the mind. In D. Holland & N. Quinn (Eds.),Cultural models in language and thought (pp. 112–148). New York: Cambridge University Press.Google Scholar
  47. Decety, J. (1996). The neurophysiological basis of motor imagery.Behavioural Brain Research,77, 45–52.PubMedGoogle Scholar
  48. Decety, J. (in press). A cognitive neuroscience view of imitation. In S. J. Rogers & J. H. G. Williams (Eds.), Imitation and the social mind: Autism and typical development. New York: Guilford.Google Scholar
  49. Decety, J., Chaminade, T., Grèzes, J., &Meltzoff, A. N. (2002). A PET exploration of the neural mechanisms involved in reciprocal imitation.NeuroImage,15, 265–272.PubMedGoogle Scholar
  50. Decety, J., Grèzes, J., Costes, N., Perani, D., Jeannerod, M., Procyk, E., et al. (1997). Brain activity during observation of action: Influence of action content and subject’s strategy.Brain,120, 1763–1777.PubMedGoogle Scholar
  51. Decety, J., &Jackson, P. L. (2004). The functional architecture of human empathy.Behavioral & Cognitive Neuroscience Reviews,3, 71–100.Google Scholar
  52. Decety, J., Jeannerod, M., Durozard, D., &Baverel, G. (1993). Central activation of autonomic effectors during mental simulation of motor actions in man.Journal of Physiology,461, 549–563.PubMedPubMedCentralGoogle Scholar
  53. Decety, J., Jeannerod, M., Germain, M., &Pastene, J. (1991). Vegetative response during imagined movement is proportional to mental effort.Behavioural Brain Research,42, 1–5.PubMedGoogle Scholar
  54. Decety, J., &Sommerville, J. A. (2003). Shared representations between self and other: A social cognitive neuroscience view.Trends in Cognitive Sciences,12, 527–533.Google Scholar
  55. Desmurget, M., &Grafton, S. (2003). Feedback or feedforward control: End of a dichotomy. In S. H. Johnson-Frey (Ed.),Taking action: Cognitive neuroscience perspectives on intentional acts (pp. 289–338). Cambridge, MA: MIT Press.Google Scholar
  56. Diamond, A. (2000). Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex.Child Development,71, 44–56.PubMedGoogle Scholar
  57. Dominey, P. F., Decety, J., Broussolle, E., Chazot, G., &Jeannerod, M. (1995). Motor imagery of a lateralized sequential task is asymmetrically slowed in hemi-Parkinson’s patients.Neuropsychologia,33, 727–741.PubMedGoogle Scholar
  58. Ehrsson, H. H., Geyer, S., &Naito, E. (2003). Imagery of voluntary movement of fingers, toes and tongue activates corresponding bodypart-specific motor representations.Journal of Neurophysiology,90, 3304–3316.PubMedGoogle Scholar
  59. Fadiga, L., Craighero, L., Buccino, G., &Rizzolatti, G. (2002). Speech listening specifically modulates the excitability of tongue muscles: A TMS study.European Journal of Neuroscience,15, 399–402.PubMedGoogle Scholar
  60. Falkman, K. W., Sandberg, A. D., &Hjelmquist, E. (2004). Theory of mind in children with cerebral palsy and severe speech impairment.Göteberg Psychological Reports,34, 1–16.Google Scholar
  61. Farrer, C., Franck, N., Georgieff, N., Frith, C. D., Decety, J., &Jeannerod, M. (2003). Modulating agency: A PET study.NeuroImage,18, 324–333.PubMedGoogle Scholar
  62. Farrer, C., &Frith, C. D. (2002). Experiencing oneself vs. another person as being the cause of an action: The neural correlates of the experience of agency.NeuroImage,15, 596–603.PubMedGoogle Scholar
  63. Fecteau, S., Carmant, L., Tremblay, C., Robert, M., Bouthillier, A., &Théoret, H. (2004). A motor resonance mechanism in children? Evidence from subdural electrodes in a 36-month-old child.Neuro-Report,15, 2625–2627.Google Scholar
  64. Field, T. (1995). Infants of depressed mothers.Infant Behavior & Development,18, 1–13.Google Scholar
  65. Filipek, P. A., Semrud-Clikeman, M., Steingard, R. J., Renshaw, P. F., Kennedy, D. N., &Beiderman, J. (1997). Volumetric MRI analysis comparing subjects having attention-deficit hyperactivity disorder with normal controls.Neurology,48, 589–601.PubMedGoogle Scholar
  66. Flanagan, J. R., &Johansson, R. S. (2003). Action plans used in action observation.Nature,424, 769–770.PubMedGoogle Scholar
  67. Fogassi, L., Ferrari, P. F., Gesierich, B., Rozzi, S., Chersi, F., &Rizzolatti, G. (2005). Parietal lobe: From action organization to intention understanding.Science,308, 662–667.PubMedGoogle Scholar
  68. Forman, D. R., Aksan, N., &Kochanska, G. (2004). Toddlers’ responsive imitation predicts preschool-age conscience.Psychological Science,15, 699–704.PubMedGoogle Scholar
  69. Frith, U., &Frith, C. D. (2003). Development and neurophysiology of mentalizing.Philosophical Transactions of the Royal Society of London: Series B,358, 459–473.Google Scholar
  70. Fuster, J. M. (1997).The prefrontal cortex. Philadelphia: Lippincott, Raven.Google Scholar
  71. Gallese, V., Ferrari, P. F., Kohler, E., &Fogassi, L. (2002). The eyes, the hand, and the mind: Behavioral and neurophysiological aspects of social cognition. In M. Bekoff, C. Allen, & G. M. Burghardt (Eds.),The cognitive animal: Empirical and theoretical perspectives on animal cognition (pp. 451–461). Cambridge, MA: MIT Press, Bradford Books.Google Scholar
  72. Gallese, V., &Goldman, A. (1998). Mirror neurons and the simulation theory of mind-reading.Trends in Cognitive Sciences,2, 493–501.PubMedGoogle Scholar
  73. Gallese, V., Keysers, C., &Rizzolatti, G. (2004). A unifying view of the basis of social cognition.Trends in Cognitive Sciences,8, 396–403.PubMedGoogle Scholar
  74. Gergely, G., Bekkering, H., &Király, I. (2002). Rational imitation in preverbal infants.Nature,415, 755.PubMedGoogle Scholar
  75. Geyer, S., Matelli, M., Luppino, G., &Zilles, K. (2000). Functional neuroanatomy of the primate isocortical motor system.Anatomy & Embryology,202, 443–474.Google Scholar
  76. Gibson, J. J. (1966).The senses considered as perceptual systems. Boston: Houghton Mifflin.Google Scholar
  77. Giedd, J. N., Blumenthal, J., Jeffries, N. O., Castellanos, F. X., Liu, H., Zijdenbos, A., et al. (1999). Brain development during childhood and adolescence: A longitudinal MRI study.Nature Neuroscience,2, 861–863.PubMedGoogle Scholar
  78. Gobet, F., Lane, P. C. R., Croker, S., Cheng, G. J., Oliver, I., &Pine, J. M. (2001). Chunking mechanisms in human learning.Trends in Cognitive Sciences,5, 236–243.PubMedGoogle Scholar
  79. Gobet, F., &Simon, H. A. (2000). Five seconds or sixty? Presentation time in expert memory.Cognitive Science,24, 651–682.Google Scholar
  80. Goldman, A. I. (2002). Simulation theory and mental concepts. In J. Dokic & J. Proust (Eds.),Simulation and knowledge of action (pp. 2–19). Amsterdam: John Benjamins.Google Scholar
  81. Gopnik, A., &Astington, J. W. (1988). Children’s understanding of representational change and its relation to the understanding of false belief and the appearance-reality distinction.Child Development,59, 26–37.PubMedGoogle Scholar
  82. Gordon, R. M. (1986). Folk psychology as simulation.Mind & Language,1, 158–171.Google Scholar
  83. Gottlieb, G. (1992).Individual development and evolution: The genesis of novel behavior. New York: Oxford University Press.Google Scholar
  84. Grafton, S. T., Arbib, M. A., Fadiga, L., &Rizzolatti, G. (1996). Localization of grasp representations in humans by positron emission tomography.Experimental Brain Research,112, 103–111.PubMedGoogle Scholar
  85. Grèzes, J., Armony, J. L., Rowe, J., &Passingham, R. E. (2003). Activations related to “mirror” and “canonical” neurones in the human brain: An fMRI study.NeuroImage,18, 928–937.PubMedGoogle Scholar
  86. Grèzes, J., Costes, N., &Decety, J. (1998). Top-down effect of strategy on the perception of human biological motion: A PET investigation.Cognitive Neuropsychology,15, 553–582.PubMedGoogle Scholar
  87. Grèzes, J., &Decety, J. (2001). Functional anatomy of execution, mental simulation, observation, and verb generation of actions: A metaanalysis.Human Brain Mapping,12, 1–19.PubMedGoogle Scholar
  88. Grèzes, J., &Decety, J. (2002). Does visual perception of object afford action? Evidence from a neuroimaging study.Neuropsychologia,40, 212–222.PubMedGoogle Scholar
  89. Grèzes, J., Frith, C. D., &Passingham, R. E. (2004). Inferring false beliefs from the actions of oneself and others: An fMRI study.Neuro-Image,21, 744–750.PubMedGoogle Scholar
  90. Hamilton, A., Wolpert, D., &Frith, U. (2004). Your own action influences how you perceive another person’s action.Current Biology,14, 493–498.PubMedGoogle Scholar
  91. Hamzei, F., Rijntjes, M., Dettmers, C., Glauche, V., Weiller, C., &Büchel, C. (2003). The human action recognition system and its relationship to Broca’s area: An fMRI study.NeuroImage,19, 637–644.PubMedGoogle Scholar
  92. Happé, F., Briskman, J., &Frith, U. (2001). Exploring the cognitive phenotype of autism: Weak “central coherence” in parents and siblings of children with autism. I: Experimental tests.Journal of Child Psychology & Psychiatry & Allied Disciplines,42, 299–307.Google Scholar
  93. Happé, F., Brownell, H., &Winner, E. (1999). Acquired “theory of mind” impairments following stroke.Cognition,70, 211–240.PubMedGoogle Scholar
  94. Hari, R., Forss, N., Avikainen, S., Kirveskari, E., Salenius, S., &Rizzolatti, G. (1998). Activation of human primary motor cortex during action observation: A neuromagnetic study.Proceedings of the National Academy of Sciences,95, 15061–15065.Google Scholar
  95. Harris, P. L. (1989).Children and emotion: The development of psychological understanding. Oxford: Blackwell.Google Scholar
  96. Hayne, H., Boniface, J., &Barr, R. (2000). The development of declarative memory in human infants: Age-related changes in deferred imitation.Behavioral Neuroscience,114, 77–83.PubMedGoogle Scholar
  97. Heal, J. (1998). Co-cognition and off-line simulation: Two ways of understanding the simulation approach.Mind & Language,13, 477–498.Google Scholar
  98. Hecht, H., Vogt, S., &Prinz, W. (2001). Motor learning enhances perceptual judgment: A case for action-perception transfer.Psychological Research,65, 3–14.PubMedGoogle Scholar
  99. Heider, F., &Simmel, M. (1944). An experimental study of apparent behavior.American Journal of Psychology,57, 243–259.Google Scholar
  100. Hobson, R. P., &Lee, A. (1999). Imitation and identification in autism.Journal of Child Psychology & Psychiatry,40, 649–659.Google Scholar
  101. Hommel, B. (2004). Event files: Feature binding in and across perception and action.Trends in Cognitive Sciences,8, 494–500.PubMedGoogle Scholar
  102. Hommel, B., Müsseler, J., Aschersleben, G., &Prinz, W. (2001). The theory of event coding (TEC): A framework for perception and action planning.Behavioral & Brain Sciences,24, 849–937.Google Scholar
  103. Iacoboni, M., Molnar-Szakacs, I., Gallese, V., Buccino, G., Mazziotta, J. C., &Rizzolatti, G. (2005). Grasping the intentions of others with one’s own mirror neuron system.Public Library of Science Biology,3, e79.Google Scholar
  104. Iacoboni, M., Woods, R. P., Brass, M., Bekkering, H., Mazziotta, J. C., &Rizzolatti, G. (1999). Cortical mechanisms of human imitation.Science,286, 2526–2528.PubMedGoogle Scholar
  105. Jackson, P. L., Brunet, E., Meltzoff, A. N., &Decety, J. (2006). Empathy examined through the neural mechanisms involved in imagining how I feel versus how you feel pain.Neuropsychologia,44, 752–761.PubMedGoogle Scholar
  106. Jacob, P., &Jeannerod, M. (2004). The motor theory of social cognition: A critique.Trends in Cognitive Sciences,9, 21–25.Google Scholar
  107. Jacobs, A., &Shiffrar, M. (2005). Walking perception by walking observers.Journal of Experimental Psychology: Human Perception & Performance,31, 157–169.Google Scholar
  108. Järveläinen, J., Schürmann, M., &Hari, R. (2004). Activation of the human primary motor cortex during observation of tool use.Neuro-Image,23, 187–192.PubMedGoogle Scholar
  109. Jeannerod, M. (1994). The representing brain: Neural correlates of motor intention and imagery.Behavioral & Brain Sciences,17, 187–245.Google Scholar
  110. Jeannerod, M. (1999). To act or not to act: Perspectives on the representation of actions.Quarterly Journal of Experimental Psychology,52A, 1–29.Google Scholar
  111. Jeannerod, M. (2001). Neural simulation of action: A unifying mechanism for motor cognition.NeuroImage,14, S103-S109.PubMedGoogle Scholar
  112. Jeannerod, M. (2003). The mechanism of self-recognition in human.Behavioural Brain Research,142, 1–15.PubMedGoogle Scholar
  113. Jellema, T., Baker, C. I., Wicker, B., &Perrett, D. I. (2000). Neural representation for the perception of the intentionality of actions.Brain & Cognition,44, 280–302.Google Scholar
  114. Johnson, M. H. (1997).Developmental cognitive neuroscience: An introduction. Oxford: Blackwell.Google Scholar
  115. Johnson, M. H. (2000). Functional brain development in infants: Elements of an interactive specialization framework.Child Development,71, 75–81.PubMedGoogle Scholar
  116. Johnson, M. H., &Morton, J. (1991).Biology & cognitive development: The case of face recognition. Oxford: Blackwell.Google Scholar
  117. Johnson-Frey, S. H., McCarty, M. E., &Keen, R. (2004). Reaching beyond spatial perception: Effects of intended future actions on visually guided prehension.Visual Cognition,11, 371–399.Google Scholar
  118. Keysers, C., &Perrett, D. I. (2004). Demystifying social cognition: A Hebbian perspective.Trends in Cognitive Sciences,8, 501–507.PubMedGoogle Scholar
  119. Kilner, J. M., Paulignan, Y., &Blakemore, S. J. (2003). An interference effect of observed biological movement on action.Current Biology,13, 522–525.PubMedGoogle Scholar
  120. Kilner, J. M., Vargas, C., Duval, S., Blakemore, S. J., &Sirigu, A. (2004). Motor activation prior to observation of a predicted movement.Nature Neuroscience,7, 1299–1301.PubMedGoogle Scholar
  121. Kinsbourne, M. (2002). The role of imitation in body ownership and mental growth. In A. N. Meltzoff & W. Prinz (Eds.),The imitative mind: Development, evolution, and brain bases (pp. 311–330). Cambridge: Cambridge University Press.Google Scholar
  122. Knoblich, G., &Flach, R. (2001). Predicting the effects of actions: Interactions of perception and action.Psychological Science,12, 467–472.PubMedGoogle Scholar
  123. Knoblich, G., &Flach, R. (2003). Action identity: Evidence from self-recognition, prediction, and coordination.Consciousness & Cognition,12, 620–632.Google Scholar
  124. Knoblich, G., &Jordan, J. S. (2003). Action coordination in groups and individuals: Learning anticipatory control.Journal of Experimental Psychology: Learning, Memory, & Cognition,29, 1006–1016.Google Scholar
  125. Kohler, E., Keysers, C., Umiltà, M. A., Fogassi, L., Gallese, V., &Rizzolatti, G. (2002). Hearing sounds, understanding actions: Action representation in mirror neurons.Science,297, 846–848.PubMedGoogle Scholar
  126. Krams, M., Rushworth, M. F. S., Deiber, M. P., Frackowiak, R. S. J., &Passingham, R. E. (1998). The preparation, execution and suppression of copied movements.Experimental Brain Research,120, 386–398.PubMedGoogle Scholar
  127. Kugiumutzakis, G. (1993). Intersubjective vocal imitation in early mother—infant interaction. In J. Nadel & L. Camioni (Eds.),New perspectives in early communicative development (pp. 23–47). London: Routledge.Google Scholar
  128. Kugiumutzakis, G. (1999). Neonatal imitation in the intersubjective companion space. In S. Bråten (Ed.),Intersubjective communication and emotion in early ontogeny: Studies in emotion and social interaction (pp. 63–88). New York: Cambridge University Press.Google Scholar
  129. Legerstee, M. (1991). The role of person and object in eliciting early imitation.Journal of Experimental Child Psychology,51, 423–433.PubMedGoogle Scholar
  130. Leslie, K. R., Johnson-Frey, S. H., &Grafton, S. T. (2004). Functional imaging of face and hand imitation: Towards a motor theory of empathy.NeuroImage,21, 601–607.PubMedGoogle Scholar
  131. Lhermitte, F., Pillon, B., &Serdaru, M. (1986). Human autonomy and the frontal lobes: Part I. Imitation and utilization behavior: A neuropsychological study of 75 patients.Annals of Neurology,19, 326–334.PubMedGoogle Scholar
  132. Matsumoto, K., Suzuki, W., &Tanaka, K. (2004). Neuronal correlates of goal-based motor selection in the prefrontal cortex.Science,301, 229–232.Google Scholar
  133. Meltzoff, A. N. (1990). Towards a developmental cognitive science: The implications of cross-modal matching and imitation for the devel opment of representation and memory in infancy.Annals of the New York Academy of Sciences,608, 1–31.PubMedGoogle Scholar
  134. Meltzoff, A. N. (1995). Understanding the intentions of others: Reenactment of intended acts by 18-month-old children.Developmental Psychology,31, 838–850.PubMedPubMedCentralGoogle Scholar
  135. Meltzoff, A. N., &Decety, J. (2003). What imitation tells us about social cognition: A rapprochement between developmental psychology and cognitive neuroscience.Philosophical Transactions of the Royal Society of London: Series B,358, 491–500.Google Scholar
  136. Meltzoff, A. N., &Moore, M. K. (1977). Imitation of facial and manual gestures by human neonates.Science,198, 75–78.PubMedGoogle Scholar
  137. Meltzoff, A. N., &Moore, M. K. (1994). Imitation, memory, and the representation of persons.Infant Behavior & Development,17, 83–99.Google Scholar
  138. Mostofsky, S. H., Reiss, A. L., Lockhart, P., &Denckla, M. B. (1998). Evaluation of cerebellar size in attention-deficit hyperactivity disorder.Journal of Child Neurology,13, 434–439.PubMedGoogle Scholar
  139. Müsseler, J., &Hommel, B. (1997). Blindness to response-compatible stimuli.Journal of Experimental Psychology: Human Perception & Performance,23, 861–872.Google Scholar
  140. Nadel, J. (2002). Some reasons to link imitation and imitation recognition to theory of mind. In J. Dokic & J. Proust (Eds.),Simulation and knowledge of action (pp. 119–135). Amsterdam: John Bejamins.Google Scholar
  141. Nagell, K., Olguin, R. S., &Tomasello, M. (1993). Processes of social learning in the tool use of chimpanzees (Pan troglodytes) and human children (Homo sapiens).Journal of Comparative Psychology,107, 174–186.PubMedGoogle Scholar
  142. Neisser, U. (1991). Two perceptually given aspects of the self and their development.Developmental Review,11, 197–209.Google Scholar
  143. Newtson, D., &Engquist, G. (1976). The perceptual organization of ongoing behavior.Journal of Experimental Social Psychology,12, 436–450.Google Scholar
  144. Nishitani, N., Avikainen, S., &Hari, R. (2004). Abnormal imitationrelated cortical activation sequences in Asperger’s syndrome.Annals of Neurology,55, 558–562.PubMedGoogle Scholar
  145. Nishitani, N., &Hari, R. (2000). Temporal dynamics of cortical representation of action.Neurobiology,97, 913–918.Google Scholar
  146. Nishitani, N., &Hari, R. (2002). Viewing lip forms: Cortical dynamics.Neuron,36, 1211–1220.PubMedGoogle Scholar
  147. Orliaguet, J. P., Kandel, S., &Boe, L. J. (1997). Visual perception of motor anticipation in cursive handwriting: Influence of spatial and movement information on the prediction of forthcoming letters.Perception,26, 905–912.PubMedGoogle Scholar
  148. Paccalin, C., &Jeannerod, M. (2000). Changes in breathing during observation of effortful actions.Brain Research,862, 194–200.PubMedGoogle Scholar
  149. Pecher, D., Zeelenberg, R., &Barsalou, L. W. (2004). Sensorimotor simulations underlie conceptual representations: Modality-specific effects of prior activation.Psychonomic Bulletin & Review,11, 164–167.Google Scholar
  150. Perani, D., Fazio, F., Borghese, N. A., Tettamanti, M., Ferrari, S., Decety, J., &Gilardi, M. C. (2001). Different brain correlates for watching real and virtual hand actions.NeuroImage,14, 749–758.PubMedGoogle Scholar
  151. Perrett, D. I., Harries, M. H., Bevan, R., Thomas, S., Benson, P. J., Mistlin, A. J., et al. (1989). Frameworks of analysis for the neural representation of animate objects and actions.Journal of Experimental Biology,146, 87–113.PubMedGoogle Scholar
  152. Phillips, A. T., Wellman, H. M., &Spelke, E. (2002). Infants’ ability to connect eye gaze and emotional expression to intentional action.Cognition,85, 53–78.PubMedGoogle Scholar
  153. Povinelli, D. J. (2000).Folk physics for apes: The chimpanzee’s theory of how the world works. Oxford: Oxford University Press.Google Scholar
  154. Preston, S. D., &de Waal, F. B. M. (2002). Empathy: Its ultimate and proximate bases.Behavioral & Brain Sciences,25, 1–71.Google Scholar
  155. Prinz, W. (1997). Perception and action planning.European Journal of Cognitive Psychology,9, 129–154.Google Scholar
  156. Prinz, W. (2003). Experimental approaches to action. In J. Roessler & N. Eilan (Eds.),Agency and self-awareness (pp. 175–187). Oxford: Oxford University Press.Google Scholar
  157. Ramnani, N., &Miall, R. C. (2004). A system in the human brain for predicting the actions of others.Nature Neuroscience,7, 85–90.PubMedGoogle Scholar
  158. Raos, V., Evangeliou, M. N., &Savaki, H. F. (2004). Observation of action: Grasping with the mind’s hand.NeuroImage,23, 193–201.PubMedGoogle Scholar
  159. Reed, C. L., &Farah, M. J. (1995). The psychological reality of the body schema: A test with normal participants.Journal of Experimental Psychology: Human Perception & Performance,21, 334–343.Google Scholar
  160. Rizzolatti, G., &Craighero, L. (2004). The mirror-neuron system.Annual Review of Neuroscience,27, 169–192.PubMedGoogle Scholar
  161. Rizzolatti, G., Fadiga, L., Gallese, V., &Fogassi, L. (1996). Premotor cortex and the recognition of motor actions.Cognitive Brain Research,3, 131–141.PubMedGoogle Scholar
  162. Rizzolatti, G., Fogassi, L., &Gallese, V. (2001). Neurophysiological mechanisms underlying the understanding and imitation of action.Nature Reviews Neuroscience,2, 661–670.PubMedGoogle Scholar
  163. Rizzolatti, G., Fogassi, L., &Gallese, V. (2004). Cortical mechanisms subserving object grasping, action understanding, and imitation. In M. S. Gazzaniga (Ed.),The cognitive neurosciences (3rd ed., pp. 427–440). Cambridge, MA: MIT Press.Google Scholar
  164. Rochat, P., &Hespos, S. J. (1997). Differential rooting response by neonates: Evidence for an early sense self.Early Development & Parenting,6, 105–112.Google Scholar
  165. Ruby, P., &Decety, J. (2001). Effect of subjective perspective taking during simulation of action: A PET investigation of agency.Nature Neuroscience,4, 546–550.PubMedGoogle Scholar
  166. Ruby, P., &Decety, J. (2004). How would you feel versus how do you think she would feel? A neuroimaging study of perspective taking with social emotions.Journal of Cognitive Neuroscience,16, 988–999.PubMedGoogle Scholar
  167. Ruby, P., Sirigu, A., &Decety, J. (2002). Distinct areas in parietal cortex involved in long-term and short-term action planning: A PET investigation.Cortex,38, 321–339.PubMedGoogle Scholar
  168. Ryalls, B. O., Gul, R. E., &Ryalls, K. R. (2000). Infant’s imitation of peer and adult models: Evidence for a peer model advantage.Merrill-Palmer Quarterly,46, 188–202.Google Scholar
  169. Saxe, R. (2005). Against simulation: The argument from error.Trends in Cognitive Sciences,9, 174–179.PubMedGoogle Scholar
  170. Saxe, R., Carey, S., &Kanwisher, N. (2004). Understanding other minds: Linking developmental psychology and functional neuroimaging.Annual Review of Psychology,55, 87–124.PubMedGoogle Scholar
  171. Schubotz, R. I., &von Cramon, Y. (2003). Functional-anatomical concepts for human premotor cortex: Evidence from fMRI and PET studies.NeuroImage,20, S120-S131.PubMedGoogle Scholar
  172. Sebanz, N., Knoblich, G., &Prinz, W. (2003). Representing others’ actions: Just like one’s own?Cognition,88, B11-B21.PubMedGoogle Scholar
  173. Shepard, R. N. (1984). Ecological constraints on internal representation: Resonant kinematics of perceiving, imagining, thinking, and dreaming.Psychological Review,91, 417–447.PubMedGoogle Scholar
  174. Shiffrar, M., &Freyd, J. J. (1990). Apparent motion of the human body.Psychological Science,1, 257–264.Google Scholar
  175. Siegal, M., &Varley, R. (2002). Neural systems involved in “theory of mind”.Nature Reviews Neuroscience,3, 463–471.PubMedGoogle Scholar
  176. Slackman, E. A., Hudson, J. A., &Fivush, R. (1986). Actions, actors, links, and goals: The structure of children’s event representations. In K. Nelson (Ed.),Event knowledge: Structure and function in development (pp. 47–69). Hillsdale, NJ: Erlbaum.Google Scholar
  177. Smith, I. M., &Bryson, S. E. (1994). Imitation and action in autism: A critical review.Psychological Bulletin,116, 259–273. or]Sommerville, J. A., & Hammond, A. J. (2005). Treating another’s actions as one’s own: Children’s memory of and learning from joint activity. Manuscript submitted for publication.PubMedGoogle Scholar
  178. Sommerville, J. A., &Woodward, A. L. (2005a). Infants’ sensitivity to the causal features of means-end support sequences in actions and perception.Infancy,8, 119–145.Google Scholar
  179. Sommerville, J. A., &Woodward, A. L. (2005b). Pulling out the intentional structure of action: The relation between action processing and action production in infancy.Cognition,95, 1–30.PubMedPubMedCentralGoogle Scholar
  180. Sommerville, J. A., Woodward, A. L., &Needham, A. (2005). Action experience alters 3-month-old infants’ perception of others’ actions.Cognition,96, B1-B11.PubMedPubMedCentralGoogle Scholar
  181. Spence, S. A., Brooks, D. J., Hirsch, S. R., Liddle, P. F., Meehan, J., &Grasby, P. M. (1997). A PET study of voluntary movement in schizophrenic patients experiencing passivity phenomena (delusions of alien control).Brain,120, 1997–2011.PubMedGoogle Scholar
  182. Sperry, R. W. (1952). Neurology and the mind—body problem.American Scientist,40, 291–312.Google Scholar
  183. Stevens, J. A., Fonlupt, P., Shiffrar, M. A., &Decety, J. (2000). New aspects of motion perception: Selective neural encoding of apparent human movements.NeuroReport,11, 109–115.PubMedGoogle Scholar
  184. Stock, A., &Stock, C. (2004). A short history of ideo-motor action.Psychological Research,68, 176–188.PubMedGoogle Scholar
  185. Tai, Y. F., Scherfler, C., Brooks, D. J., Sawamoto, N., &Castiello, U. (2004). The human premotor cortex is mirror only for biological actions.Current Biology,14, 117–120.PubMedGoogle Scholar
  186. Thelen, E. (1995). Motor development: A new synthesis.American Psychologist,50, 79–95.PubMedGoogle Scholar
  187. Thelen, E., Schöner, G., Scheier, C., &Smith, L. B. (2001). The dynamics of embodiment: A field theory of infant perseverative reaching.Behavioral & Brain Sciences,24, 1–86.Google Scholar
  188. Thelen, M. H., Dollinger, S. J., &Roberts, M. C. (1975). On being imitated: Its effects on attraction and reciprocal imitation.Journal of Personality & Social Psychology,31, 467–472.Google Scholar
  189. Thobois, S., Dominey, P. F., Decety, J., Pollak, P. P., Gregoire, M. C., Le Bars, P. D., &Broussolle, E. (2000). Motor imagery in normal subjects and in asymmetrical Parkinson’s disease: A PET study.Neurology,55, 996–1002.PubMedGoogle Scholar
  190. Tomasello, M. (1999).The cultural origins of human cognition. Cambridge, MA: Harvard University Press.Google Scholar
  191. Tomasello, M., Call, J., Warren, J. A., Frost, G. T., Carpenter, M., &Nagell, K. M. (1997). The ontogeny of chimpanzee gestural signals: A comparison across groups and generations.Evolution of Communication,1, 223–259.Google Scholar
  192. Travis, L. L. (1997). Goal-based organization of event memory in toddlers. In P. W. van den Broek, P. J. Bauer, & T. Bovig (Eds.),Developmental spans in event comprehension and representation: Bridging fictional and actual events (pp. 111–138). Mahwah, NJ: Erlbaum.Google Scholar
  193. Trevarthen, C. (1979). Communication and cooperation in early infancy: A description of primary intersubjectivity. In M. Bullowa (Ed.),Before speech: The beginning of interpersonal communication (pp. 321–347). Cambridge: Cambridge University Press.Google Scholar
  194. Umiltà, M. A., Kohler, E., Gallese, V., Fogassi, L., Fadiga, L., Keysers, C., &Rizzolatti, G. (2001). I know what you are doing: A neurophysiological study.Neuron,31, 155–165.PubMedGoogle Scholar
  195. Verfaillie, K., &Daems, A. (2002). Representing and anticipating human actions in vision.Visual Cognition,9, 217–232.Google Scholar
  196. Watkins, K. E., Strafella, A. P., &Paus, T. (2003). Seeing and hearing speech excites the motor system involved in speech production.Neuropsychologia,41, 989–994.PubMedGoogle Scholar
  197. Wellman, H. M. (1990).The child’s theory of mind. Cambridge, MA: MIT Press.Google Scholar
  198. Wellman, H. M., Cross, D., &Watson, J. (2001). Meta-analysis of theory of mind development: The truth about false belief.Child Development,72, 702–707.PubMedGoogle Scholar
  199. Williams, J. H. G., Waiter, G. D., Gilchrist, A., Perrett, D. I., Murray, A. D., &Whiten, A. (2006). Neural mechanisms of imitation and “mirror neuron” functioning in autistic spectrum disorder.Neuropsychologia,44, 610–621.PubMedGoogle Scholar
  200. Williams, J. H. G., Whiten, A., &Singh, T. (2004). A systematic review of action imitation in autistic spectrum disorder.Journal of Autism & Developmental Disorders,34, 285–299.Google Scholar
  201. Williams, J. H. G., Whiten, A., Suddendorf, T., &Perrett, D. I. (2001). Imitation, mirror neurons and autism.Neuroscience & Biobehavioral Reviews,25, 287–295.Google Scholar
  202. Wilson, M. (2002). Six views of embodied cognition.Psychonomic Bulletin & Review,9, 625–636.Google Scholar
  203. Wilson, M., &Knoblich, G. (2005). The case for motor involvement in perceiving conspecifics.Psychological Bulletin,131, 460–473.PubMedGoogle Scholar
  204. Wilson, P. H., Maruff, P., Butson, M., Williams, J., Lum, J., &Thomas, P. R. (2004). Internal representation of movement in children with developmental coordination disorder.Developmental Medicine & Child Neurology,46, 754–759.Google Scholar
  205. Wilson, P. H., Thomas, P. R., &Maruff, P. (2002). Motor imagery training ameliorates motor clumsiness in children.Journal of Child Neurology,17, 491–498.PubMedGoogle Scholar
  206. Wimmer, H., &Perner, J. (1983). Beliefs about beliefs: Representation and constraining function of wrong beliefs in young children’s understanding of deception.Cognition,13, 103–128.PubMedGoogle Scholar
  207. Wood, J. N., Knutson, K. M., &Grafman, J. (2005). Psychological structure and neural correlates of event knowledge.Cerebral Cortex,15, 1155–1161.PubMedGoogle Scholar
  208. Yoshimura, N., &Kawamura, M. (2005).[Impairment of social cognition in Parkinson’s disease]. No To Shinkei,57, 107–113.PubMedGoogle Scholar
  209. Zacks, J. M. (2004). Using movement and intentions to understand simple events.Cognitive Science,28, 979–1008.Google Scholar
  210. Zacks, J. M., Braver, T. S., Sheridan, M. A., Donaldson, D. I., Snyder, A. Z., Ollinger, J. M., et al. (2001). Human brain activity time-locked to perceptual event boundaries.Nature Neuroscience,4, 651–655.PubMedGoogle Scholar
  211. Zacks, J. M., &Tversky, B. (2001). Event structure in perception and conception.Psychological Bulletin,127, 3–21.PubMedGoogle Scholar
  212. Zacks, J. M., Tversky, B., &Iyer, G. (2001). Perceiving, remembering, and communicating structure in events.Journal of Experimental Psychology: General,130, 29–58.Google Scholar
  213. Zalla, T., Pradat-Diehl, P., &Sirigu, A. (2003). Perception of action boundaries in patients with frontal lobe damage.Neuropsychologia,41, 1619–1627.PubMedGoogle Scholar
  214. Zilbovicius, M., Boddaert, N., Belin, P., Poline, J.-B., Remy, P., Mangin, J.-F., et al. (2000). Temporal lobe dysfunction in childhood autism: A PET study.American Journal of Psychiatry,157, 1988–1993.PubMedGoogle Scholar
  215. Zilbovicius, M., Garreau, B., Samson, Y., Remy, P., Barthélémy, C., Syrota, A., &Lelord, G. (1995). Delayed maturation of the frontal cortex in childhood autism.American Journal of Psychiatry,152, 248–252.PubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2006

Authors and Affiliations

  1. 1.University of ChicagoChicago
  2. 2.Department of Psychology and Institute for Learning and Brain SciencesUniversity of WashingtonSeattle

Personalised recommendations