Psychonomic Bulletin & Review

, Volume 13, Issue 1, pp 166–173 | Cite as

Comment and Reply Why eye movements and perceptual factors have to be controlled in studies on “representational momentum”



In order to study memory of the final position of a smoothly moving target, Hubbard (e.g., Hubbard & Bharucha, 1988) presented smooth stimulus motion and used motor responses. In contrast, Freyd (e.g., Freyd & Finke, 1984) presented implied stimulus motion and used the method of constant stimuli. The same forward error was observed in both paradigms. However, the processes underlying the error may be very different. When smooth stimulus motion is followed by smooth pursuit eye movements, the forward error is associated with asynchronous processing of retinal and extraretinal information. In the absence of eye movements, no forward displacement is observed with smooth motion. In contrast, implied motion produces a forward error even without eye movements, suggesting that observers extrapolate the next target step when successive target presentations are far apart. Finally, motor responses produce errors that are not observed with perceptual judgments, indicating that the motor system may compensate for neuronal latencies.


  1. Ashida, H. (2004). Action-specific extrapolation of target motion in human visual system.Neuropsychologia,42, 1515–1524.CrossRefPubMedGoogle Scholar
  2. Baldo, M. V., Kihara, A. H., Namba, J., &Klein, S. A. (2002). Evidence for an attentional component of the perceptual misalignment between moving and flashing stimuli.Perception,31, 17–30.CrossRefPubMedGoogle Scholar
  3. Brenner, E., Smeets, J. B. J., &van den Berg, A. V. (2001). Smooth eye movements and spatial localisation.Vision Research,41, 2253–2259.CrossRefPubMedGoogle Scholar
  4. Churchland, M. M., &Lisberger, S. G. (2000). Apparent motion produces multiple deficits in visually guided smooth pursuit eye movements of monkeys.Journal of Neurophysiology,84, 216–235.PubMedGoogle Scholar
  5. Collewijn, H., &Tamminga, E. P. (1984). Human smooth and saccadic eye movements during voluntary pursuit of different target motions on different backgrounds.Journal of Physiology,351, 217–250.PubMedGoogle Scholar
  6. Cooper, L. A., &Munger, M. P. (1993). Extrapolating and remembering positions along cognitive trajectories: Use and limitations of analogies to physical motion. In N. Eilan, R. A. McCarthy, & B. Brewer (Eds.),Spatial representation: Problems in philosophy and psychology (pp. 112–131). Oxford: Blackwell.Google Scholar
  7. Eagleman, D. M., &Sejnowski, T. J. (2000). Motion integration and postdiction in visual awareness.Science,287, 2036–2038.CrossRefPubMedGoogle Scholar
  8. Erlhagen, W., &Jancke, D. (2004). The role of action plans and other cognitive factors in motion extrapolation: A modelling study.Visual Cognition,11, 315–340.CrossRefGoogle Scholar
  9. Finke, R. A., &Freyd, J. J. (1985). Transformations of visual memory induced by implied motions of pattern elements.Journal of Experimental Psychology: Learning, Memory, & Cognition,11, 780–794.CrossRefGoogle Scholar
  10. Finke, R. A., &Shyi, G. C. (1988). Mental extrapolation and representational momentum for complex implied motions.Journal of Experimental Psychology: Learning, Memory, & Cognition,14, 112–120.CrossRefGoogle Scholar
  11. Freyd, J. J., &Finke, R. A. (1984). Representational momentum.Journal of Experimental Psychology: Learning, Memory, & Cognition,10, 126–132.CrossRefGoogle Scholar
  12. Freyd, J. J., &Finke, R. A. (1985). A velocity effect for representational momentum.Bulletin of the Psychonomic Society,23, 443–446.Google Scholar
  13. Freyd, J. J., &Johnson, J. Q. (1987). Probing the time course of representational momentum.Journal of Experimental Psychology: Learning, Memory, & Cognition,13, 259–268.CrossRefGoogle Scholar
  14. Getzmann, S. (2005). Representational momentum in spatial hearing does not depend on eye movements.Experimental Brain Research,165, 229–238.CrossRefGoogle Scholar
  15. Getzmann, S., Lewald, J., &Guski, R. (2004). Representational momentum in spatial hearing.Perception,33, 591–599.CrossRefPubMedGoogle Scholar
  16. Goodale, M. A., &Milner, A. D. (1992). Separate visual pathways for perception and action.Trends in Neurosciences,15, 20–25.CrossRefPubMedGoogle Scholar
  17. Graham, C. H. (1965). Perception of movement. In C. H. Graham (Ed.),Vision and visual perception (pp. 575–588). New York: Wiley.Google Scholar
  18. Hazelhoff, F. F., &Wiersma, H. (1924). Die Wahrnehmungszeit: Erster Artikel. Die Bestimmung der Schnelligkeit der Wahrnehmung von Lichtreizen nach der Lokalisationsmethode [The time to perception: First article. The determination of the speed of perception of light stimuli with the localization method].Zeitschrift für Psychologie,96, 171–188.Google Scholar
  19. Hubbard, T. L. (1995). Cognitive representation of motion: Evidence for friction and gravity analogues.Journal of Experimental Psychology: Learning, Memory, & Cognition,21, 241–254.CrossRefGoogle Scholar
  20. Hubbard, T. L. (1996). Representational momentum, centripetal force, and curvilinear impetus.Journal of Experimental Psychology: Learning, Memory, & Cognition,22, 1049–1060.CrossRefGoogle Scholar
  21. Hubbard, T. L. (1997). Target size and displacement along the axis of implied gravitational attraction: Effects of implied weight and evidence of representational gravity.Journal of Experimental Psychology: Learning, Memory, & Cognition,23, 1484–1493.CrossRefGoogle Scholar
  22. Hubbard, T. L. (1998). Some effects of representational friction, target size, and memory averaging on memory for vertically moving targets.Canadian Journal of Experimental Psychology,52, 44–49.PubMedGoogle Scholar
  23. Hubbard, T. L. (2005). Representational momentum and related displacements in spatial memory: A review of the findings.Psychonomic Bulletin & Review,12, 822–851.CrossRefGoogle Scholar
  24. Hubbard, T. L., &Bharucha, J. J. (1988). Judged displacement in apparent vertical and horizontal motion.Perception & Psychophysics,44, 211–221.CrossRefGoogle Scholar
  25. Hubbard, T. L., &Ruppel, S. E. (1999). Representational momentum and the landmark attraction effect.Canadian Journal of Experimental Psychology,53, 242–256.Google Scholar
  26. Jordan, J. S. (2000a). The role of “control” in an embodied cognition.Philosophical Psychology, 13, 233–237.CrossRefGoogle Scholar
  27. Jordan, J. S. (2000b). The world in the organism: Living systems are knowledge.Psycoloquy,11(113).Google Scholar
  28. Kelly, M. H., &Freyd, J. J. (1987). Explorations of representational momentum.Cognitive Psychology, 19, 369–401.CrossRefPubMedGoogle Scholar
  29. Kerzel, D. (2000). Eye movements and visible persistence explain the mislocalization of the final position of a moving target. Vision Research,40, 3703–3715.CrossRefPubMedGoogle Scholar
  30. Kerzel, D. (2002a). The locus of “memory displacement” is at least partially perceptual: Effects of velocity, expectation, friction, memory averaging, and weight.Perception & Psychophysics,64, 680–692.CrossRefGoogle Scholar
  31. Kerzel, D. (2002b). Memory for the position of stationary objects: Disentangling foveal bias and memory averaging.Vision Research,42, 159–167.CrossRefPubMedGoogle Scholar
  32. Kerzel, D. (2003a). Attention maintains mental extrapolation of target position: Irrelevant distractors eliminate forward displacement after implied motion.Cognition,88, 109–131.CrossRefPubMedGoogle Scholar
  33. Kerzel, D. (2003b). Centripetal force draws the eyes, not memory for the target, toward the center.Journal of Experimental Psychology: Learning, Memory, & Cognition,29, 458–466.CrossRefGoogle Scholar
  34. Kerzel, D. (2003c). Mental extrapolation of target position is strongest with weak motion signals and motor responses.Vision Research,43, 2623–2635.CrossRefPubMedGoogle Scholar
  35. Kerzel, D. (2005). Representational momentum beyond internalized physics: Embodied mechanisms of anticipation cause errors in visual short-term memory.Current Directions in Psychological Science,14, 180–184.CrossRefGoogle Scholar
  36. Kerzel, D., &Gegenfurtner, K. R. (2003). Neuronal processing delays are compensated in the sensorimotor branch of the visual system. Current Biology, 13, 1975–1978.CrossRefPubMedGoogle Scholar
  37. Kerzel, D., Jordan, J. S., &Müsseler, J. (2001). The role of perception in the mislocalization of the final position of a moving target.Journal of Experimental Psychology: Human Perception & Performance,27, 829–840.CrossRefGoogle Scholar
  38. Krauzlis, R. J., &Stone, L. S. (1999). Tracking with the mind’s eye.Trends in Neurosciences,22, 544–550.CrossRefPubMedGoogle Scholar
  39. McBeath, M. K., Morikawa, K., &Kaiser, M. K. (1992). Perceptual bias for forward-facing motion.Psychological Science,3, 362–367.CrossRefGoogle Scholar
  40. Metzger, W. (1932). Versuch einer gemeinsamen Theorie der Phänomene Fröhlichs und Hazelhoffs und Kritik ihrer Verfahren zur Messung der Empfindungszeit [An attempt at a common theory of Fröhlich’s and Hazelhoff ’s phenomena and a critique of their procedure for measuring sensation time].Psychologische Forschung,16, 176–200.CrossRefGoogle Scholar
  41. Mita, T., Hironaka, K., &Koike, I. (1959). The influence of retinal adaptation and location on the “Empfindungszeit”.Tohoku Journal of Experimental Medicine, 52, 397–405.CrossRefGoogle Scholar
  42. Mitrani, L., &Dimitrov, G. (1978). Pursuit eye movements of a disappearing moving target.Vision Research,18, 537–539.CrossRefPubMedGoogle Scholar
  43. Mitrani, L., &Dimitrov, G. (1982). Retinal location and visual localization during pursuit eye movement.Vision Research,22, 1047–1051.CrossRefPubMedGoogle Scholar
  44. Munger, M. P., &Minchew, J. H. (2002). Parallels between remembering and predicting an object’s location.Visual Cognition,9, 177–194.CrossRefGoogle Scholar
  45. Nagai, M., &Yagi, A. (2001). The pointedness effect on representational momentum.Memory & Cognition,29, 91–99CrossRefGoogle Scholar
  46. Neuhaus, W. (1930). Experimentelle Untersuchung der Scheinbewegung [Experimental investigations of apparent motion]. Archiv für die gesamte Psychologie, 775, 315–458.Google Scholar
  47. Nijhawan, R. (1992). Misalignment of contours through the interaction of apparent and real motion systems [Abstract].Investigative Ophthalmology & Visual Science,33, 1415.Google Scholar
  48. Nijhawan, R. (1994). Motion extrapolation in catching.Nature,370, 256–257.CrossRefPubMedGoogle Scholar
  49. Nijhawan, R. (2002). Neural delays, visual motion and the flash-lag effect.Trends in Cognitive Sciences,6, 387–393.CrossRefPubMedGoogle Scholar
  50. Reed, C. L., &Vinson, N. G. (1996). Conceptual effects on representational momentum.Journal of Experimental Psychology: Human Perception & Performance,22, 839–850.CrossRefGoogle Scholar
  51. Robinson, D. A., Gordon, J. L., &Gordon, S. E. (1986). A model of the smooth pursuit eye movement system.Biological Cybernetics,55, 43–57.CrossRefPubMedGoogle Scholar
  52. Rotman, G., Brenner, E., &Smeets, J. B. J. (2004). Mislocalization of targets flashed during smooth pursuit depends on the change in gaze direction after the flash.Journal of Vision,4, 564–574.CrossRefPubMedGoogle Scholar
  53. Schlag, J., &Schlag-Rey, M. (2002). Through the eye, slowly: Delays and localization errors in the visual system.Nature Reviews Neuroscience,3, 191–215.CrossRefPubMedGoogle Scholar
  54. Sheth, B. R., &Shimojo, S. (2001). Compression of space in visual memory.Vision Research,41, 329–341.CrossRefPubMedGoogle Scholar
  55. Stork, S., &Müsseler, J. (2004). Perceived locations and eye movements with action-generated and computer-generated vanishing points of moving stimuli.Visual Cognition,11, 299–314.CrossRefGoogle Scholar
  56. Stork, S., Neggers, S. F., &Müsseler, J. (2002). Intentionally-evoked modulations of smooth pursuit eye movements.Human Movement Science,21, 335–348.CrossRefPubMedGoogle Scholar
  57. Thornton, I. M., &Hubbard, T. L. (Eds.) (2002).Representational momentum: New findings, new directions. New York: Psychology Press/Taylor & Francis.Google Scholar
  58. van Beers, R. J., Wolpert, D. M., &Haggard, P. (2001). Sensorimotor integration compensates for visual localization errors during smooth pursuit eye movements.Journal of Neurophysiology,85, 1914–1922.PubMedGoogle Scholar
  59. Vinson, N. G., &Reed, C. L. (2002). Sources of object-specific effects in representational momentum.Visual Cognition,9, 41–65.CrossRefGoogle Scholar
  60. Whitney, D., &Cavanagh, P. (2002). Surrounding motion affects the perceived locations of moving stimuli.Visual Cognition,9, 139–152.CrossRefGoogle Scholar
  61. Whitney, D., Murakami, I., &Cavanagh, P. (2000). Illusory spatial offset of a flash relative to a moving stimulus is caused by differential latencies for moving and flashed stimuli.Vision Research,40, 137–149.CrossRefPubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2006

Authors and Affiliations

  1. 1.Faculté de Psychologie et des Sciences de l’ÉducationUniversité de GenèveGenevaSwitzerland

Personalised recommendations