Perception & Psychophysics

, Volume 69, Issue 5, pp 772–784 | Cite as

Information persistence in the integration of partial cues for object recognition

  • Ernest GreeneEmail author


A great many studies have shown that the perceptual effects of very brief visual stimuli can persist beyond the duration of the stimulus itself. These effects include sustained perception of the stimulus even though it is no longer present and the integration of information across an interstimulus interval. These two forms of sustained activity can be characterized as visible persistence and information persistence. Iconic memory protocols and a number of discrimination tasks have demonstrated the existence of information persistence that can last up to several hundred milliseconds, but there is little evidence that the cues needed for identification of objects can be transferred across intervals in this range. In the present experiments, a minimal transient discrete cue protocol was used to demonstrate that shape cues, these being provided by subsets of dots that mark the outer boundary of nameable objects, can be integrated over several hundred milliseconds and that the duration is a function of ambient room illumination. The experiments further evaluated whether this information persistence is mediated by visible persistence. Although both perceptual effects have durations that are an inverse function of room illumination, the ability to integrate partial shape cues was not determined by the duration of visible persistence.


Visible Persistence Iconic Memory Room Illumination Difficulty Index Display Board 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adrian, E. D., &Matthews, R. (1927). The action of light on the eye: Pt. I. The discharge of impulses in the optic nerve and its relation in the electric changes in the retina.Journal of Physiology,63, 378–414.PubMedGoogle Scholar
  2. Allan, L. G. (1979). The perception of time.Perception & Psychophysics,26, 340–354.Google Scholar
  3. Allen, F. (1926). The persistence of vision.American Journal of Physiological Optics,7, 439–457.Google Scholar
  4. Allport, D. A. (1968). Phenomenal simultaneity and the perceptual moment hypothesis.British Journal of Psychology,59, 395–406.PubMedGoogle Scholar
  5. Averback, E., &Coriell, E. (1961). Short-term memory in vision.Bell System Technical Journal,40, 309–328.Google Scholar
  6. Barlow, H. B. (1958). Temporal and spatial summation in human vision at different background intensities.Journal of Physiology,141, 337–350.PubMedGoogle Scholar
  7. Bowen, R. W., Pola, J., &Matin, L. (1974). Visual persistence: Effects of flash luminance, duration and energy.Vision Research,14, 295–303.PubMedCrossRefGoogle Scholar
  8. Brockmole, J. R., Wang, R. F., &Irwin, D. E. (2002). Temporal integration between visual image and visual percepts.Journal of Experimental Psychology: Human Perception & Performance,28, 315–334.CrossRefGoogle Scholar
  9. Coltheart, M. (1980). Iconic memory and visible persistence.Perception & Psychophysics,27, 183–228.Google Scholar
  10. Di Lollo, V. (1977). Temporal characteristics of iconic memory.Nature,267, 241–243.PubMedCrossRefGoogle Scholar
  11. Di Lollo, V. (1980). Temporal integration in visual memory.Journal of Experimental Psychology: General,109, 75–97.CrossRefGoogle Scholar
  12. Di Lollo, V., &Bischof, W. F. (1995). Inverse-intensity effect in duration of visible persistence.Psychological Bulletin,118, 223–237.PubMedCrossRefGoogle Scholar
  13. Di Lollo, V., Enns, J. T., Yantis, S., &Dechief, L. G. (2000). Response latencies to the onset and offset of visual stimuli.Perception & Psychophysics,62, 218–225.Google Scholar
  14. Di Lollo, V., Seiffert, A. E., Burchett, G., Rabeeh, R., &Ruman, T. A. (1997). Phosphor persistence of oscilloscopic displays: A comparison of four phosphors.Spatial Vision,10, 353–360.PubMedCrossRefGoogle Scholar
  15. Di Lollo, V., &Woods, E. (1981). Duration of visible persistence in relation to range of spatial frequencies.Journal of Experimental Psychology: Human Perception & Performance,7, 754–769.CrossRefGoogle Scholar
  16. Efron, R. (1970). Effect of stimulus duration on perceptual onset and offset latencies.Perception & Psychophysics,8, 231–234.Google Scholar
  17. Efron, R., &Lee, D. N. (1971). The visual persistence of a moving stroboscopically illuminated object.American Journal of Psychology,84, 365–375.PubMedCrossRefGoogle Scholar
  18. Eriksen, C. W., &Collins, J. F. (1967). Some temporal characteristics of visual pattern perception.Journal of Experimental Psychology,74, 476–484.PubMedCrossRefGoogle Scholar
  19. Eriksen, C. W., &Collins, J. F. (1968). Sensory traces versus the psychological moment in the temporal organization of form.Journal of Experimental Psychology,77, 376–380.PubMedCrossRefGoogle Scholar
  20. Haber R. N., &Standing, L. (1969). Direct measures of short-term visual storage.Quarterly Journal of Experimental Psychology,21, 43–54.PubMedCrossRefGoogle Scholar
  21. Hansteen, R. W. (1971). Visual latency as a function of stimulus onset, offset, and background luminance.Journal of the Optical Society of America,61, 1190–1195.PubMedCrossRefGoogle Scholar
  22. Hawkins, H. L., &Shulman, G. L. (1979). Two definitions of persistence in visual perception.Perception & Psychophysics,25, 348–350.CrossRefGoogle Scholar
  23. Hemila, S., Lerber, T., &Donner, K. (1998). Noise-equivalent and signal-equivalent visual summation of quantal events in space and time.Visual Neuroscience,15, 731–742.PubMedCrossRefGoogle Scholar
  24. Hogben, J. H., &Di Lollo, V. (1974). Perceptual integration and perceptual segregation of brief visual stimuli.Vision Research,14, 1059–1069.PubMedCrossRefGoogle Scholar
  25. Irwin, D. E., Yantis, S., &Jonides, J. (1983). Evidence against visual integration across saccadic eye movements.Perception & Psychophysics,34, 49–57.Google Scholar
  26. Irwin, D. E., &Yeomans, J. M. (1986). Persisting arguments about visual persistence: Reply to Long.Perception & Psychophysics,39, 225–230.Google Scholar
  27. Jonides, J., Irwin, D. E., &Yantis, S. (1982). Integrating visual information from successive fixations.Science,215, 192–194.PubMedCrossRefGoogle Scholar
  28. Jonides, J., Irwin, D. E., &Yantis, S. (1983). Failure to integrate information from successive fixations.Science,222, 188.PubMedCrossRefGoogle Scholar
  29. Keele, S. W., &Chase, W. G. (1967). Short-term visual storage.Perception & Psychophysics,2, 383–386.Google Scholar
  30. Long, G. M. (1979). Comment on Hawkins and Shulman’s Type I and Type II visual persistence.Perception & Psychophysics,26, 412–414.Google Scholar
  31. Long, G. M. (1980). Iconic memory: A review and critique of the study of short-term visual storage.Psychological Bulletin,88, 785–820.PubMedCrossRefGoogle Scholar
  32. Long, G. M., &Gildea, T. J. (1981). Latency for the perceived offset of brief target gratings.Vision Research,21, 1395–1399.PubMedCrossRefGoogle Scholar
  33. Long, G. M., &McCarthy, P. R. (1982). Rod persistence on a partial-report task with scotopic and photopic backgrounds.American Journal of Psychology,95, 302–322.CrossRefGoogle Scholar
  34. Long, G. M., &Sakitt, B. (1980). The retinal basis of iconic memory: Eriksen and Collins revisited.American Journal of Psychology,93, 195–207.PubMedCrossRefGoogle Scholar
  35. Neisser, U. (1967).Cognitive psychology. New York: Appleton-Century-Crofts.Google Scholar
  36. Newton, I. (1952).Opticks. New York: Dover. (Original work published 1730)Google Scholar
  37. Nisly, S. J., &Wasserman, G. S. (1989). Intensity dependence of perceived duration: Data, theories, and neural integration.Psychological Bulletin,106, 483–496.PubMedCrossRefGoogle Scholar
  38. Phillips, W. A. (1974). On the distinction between sensory storage and short-term visual memory.Perception & Psychophysics,16, 283–290.Google Scholar
  39. Rayner, K., &Pollatsek, A. (1983). Is visual information integrated across saccades?Perception & Psychophysics,34, 39–48.Google Scholar
  40. Sakitt, B. (1975). Locus of short-term visual storage.Science,190, 1318–1319.PubMedCrossRefGoogle Scholar
  41. Sakitt, B. (1976a). Iconic memory.Psychological Bulletin,83, 257–276.Google Scholar
  42. Sakitt, B. (1976b). Psychophysical correlates of photoreceptor activity.Vision Research,16, 129–140.PubMedCrossRefGoogle Scholar
  43. Sakitt, B., &Long, G. M. (1978). Relative rod and cone contributions in iconic storage.Perception & Psychophysics,23, 527–536.Google Scholar
  44. Sakitt, B., &Long, G. M. (1979). Spare the rod and spoil the icon.Journal of Experimental Psychology: Human Perception & Performance,5, 19–30.CrossRefGoogle Scholar
  45. Savage, G. L. (1996). Temporal summation for grating patches detected at low light levels.Optometry & Vision Science,73, 404–412.CrossRefGoogle Scholar
  46. Schall, R. (1991). Estimation in generalized linear models with random effects.Biometrika,40, 917–927.Google Scholar
  47. Snedecor, G. W., &Cochran, W. G. (1989).Statistical methods (8th ed.). Ames: Iowa State University Press.Google Scholar
  48. Sperling, G. (1960). The information available in brief visual presentations.Psychological Monographs,74, 1–29.Google Scholar
  49. Tjan, B. S., Braje, W. L., Legge, G. E., &Kersten, D. (1995). Human efficiency for recognizing 3-D objects in luminance noise.Vision Research,35, 3053–3069.PubMedCrossRefGoogle Scholar
  50. Turvey, M. T. (1978). Visual processing and short-term memory. In W. K. Estes (Ed.),Handbook of learning and cognitive processes (Vol. 5, pp. 91–142). Hillsdale, NJ: Erlbaum.Google Scholar
  51. Warrant, E. J. (1999). Seeing better at night: Life style, eye design and the optimum strategy of spatial and temporal summation.Vision Research,39, 1611–1630.PubMedCrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2007

Authors and Affiliations

  1. 1.Laboratory for Neurometric Research, Department of PsychologyUniversity of Southern CaliforniaLos Angeles

Personalised recommendations