Perception & Psychophysics

, Volume 68, Issue 8, pp 1363–1371 | Cite as

Performance of blind and sighted humans on a tactile grating detection task

Article

Abstract

We compared the abilities of blind and sighted humans to distinguish grooved from smooth surfaces pressed against the stationary index fingertip. Ranging in age from 20 to 72 years, 37 blind and 47 sighted subjects participated in an automated two-alternative forced-choice tactile grating detection task. The tactile acuity of blind and sighted subjects declined with age at equivalent rates (0.011-mm threshold increase per year), but the blind subjects were able to perceive significantly thinner grooves than were their sighted peers (the average difference between blind and sighted subjects of the same age and gender was 0.267 mm). The blind Braille readers performed no better than the blind nonreaders, and the congenitally blind subjects performed equivalently to those with adult-onset blindness. The superior tactile acuity of blind persons may result from the involvement of normally visually responsive cerebrocortical areas in tactile processing, as shown by functional-imaging studies.

References

  1. Amedi, A., Malach, R., Hendler, T., Peled, S., &Zohary, E. (2001). Visuo-haptic object-related activation in the ventral visual pathway.Nature Neuroscience,4, 324–330.PubMedCrossRefGoogle Scholar
  2. Axelrod, S. (1959).Effects of early blindness: Performance of blind and sighted children on tactile and auditory tasks. New York: American Foundation for the Blind.Google Scholar
  3. Büchel, C., Price, C., Frackowiak, R. S. J., &Friston, K. (1998). Different activation patterns in the visual cortex of late and congenitally blind subjects.Brain,121, 409–419.PubMedCrossRefGoogle Scholar
  4. Burton, H., Snyder, A. Z., Conturo, T. E., Akbudak, E., Ollinger, J. M., &Raichle, M. E. (2002). Adaptive changes in early and late blind: A fMRI study of Braille reading.Journal of Neurophysiology,87, 589–607.PubMedGoogle Scholar
  5. Cohen, L. G., Celnik, P., Pascual-Leone, A., Corwell, B., Faiz, L., Dambrosia, J., et al. (1997). Functional relevance of cross-modal plasticity in blind humans.Nature,389, 180–183.PubMedCrossRefGoogle Scholar
  6. Cohen, L. G., Weeks, R. A., Sadato, N., Celnik, P., Ishii, K., &Hallett, M. (1999). Period of susceptibility for cross-modal plasticity in the blind.Annals of Neurology,45, 451–460.PubMedCrossRefGoogle Scholar
  7. Craig, J. C. (1999). Grating orientation as a measure of tactile spatial acuity.Somatosensory & Motor Research,16, 197–206.CrossRefGoogle Scholar
  8. Craig, J. C., &Johnson, K. O. (2000). The two-point threshold: Not a measure of tactile spatial resolution.Current Directions in Psychological Science,9, 29–32.CrossRefGoogle Scholar
  9. Essock, E. A., Krebs, W. K., &Prather, J. R. (1992). An anisotropy of human tactile sensitivity and its relation to the visual oblique effect.Experimental Brain Research,91, 520–524.CrossRefGoogle Scholar
  10. Facchini, S., &Aglioti, S. M. (2003). Short term light deprivation increases tactile spatial acuity in humans.Neurology,60, 1998–1999.PubMedGoogle Scholar
  11. Finney, E. M., Clementz, B. A., Hickok, G., &Dobkins, K. R. (2003). Visual stimuli activate auditory cortex in deaf subjects: Evidence from MEG.NeuroReport,14, 1425–1427.PubMedCrossRefGoogle Scholar
  12. Gibson, G. O., &Craig, J. C. (2002). Relative roles of spatial and intensive cues in the discrimination of spatial tactile stimuli.Perception & Psychophysics,64, 1095–1107.CrossRefGoogle Scholar
  13. Gizewski, E. R., Gasser, T., De Greiff, A., Boehm, A., &Forsting, M. (2003). Cross-modal plasticity for sensory and motor actitvation patterns in blind subjects.NeuroImage,19, 968–975.PubMedCrossRefGoogle Scholar
  14. Goldreich, D., &Kanics, I. M. (2003). Tactile acuity is enhanced in blindness.Journal of Neuroscience,23, 3439–3445.PubMedGoogle Scholar
  15. Gougoux, F., Zatorre, R. J., Lassonde, M., Voss, P., &Lepore, F. (2005). A functional neuroimaging study of sound localization: Visual cortex activity predicts performance in early-blind individuals.PLoS Biology,3, e27.PubMedCrossRefGoogle Scholar
  16. Grant, A. C., Thiagarajah, M. C., &Sathian, K. (2000). Tactile perception in blind Braille readers: A psychophysical study of acuity and hyperacuity using gratings and dot patterns.Perception & Psychophysics,62, 301–312.CrossRefGoogle Scholar
  17. Hollins, M. (1989).Understanding blindness: An integrative approach. Hillsdale, NJ: Erlbaum.Google Scholar
  18. Hollins, M., &Risner, S. R. (2000). Evidence for the duplex theory of tactile texture perception.Perception & Psychophysics,62, 695–705.CrossRefGoogle Scholar
  19. Hugdahl, K., Ek, M., Takio, F., Rintee, T., Tuomainen, J., Haarala, C., &Hämäläinen, H. (2004). Blind individuals show enhanced perceptual and attentional sensitivity for identification of speech sounds.Cognitive Brain Research,19, 28–32.PubMedCrossRefGoogle Scholar
  20. Johnson, K. O., &Phillips, J. R. (1981). Tactile spatial resolution: I. Two-point discrimination, gap detection, grating resolution, and letter recognition.Journal of Neurophysiology,46, 1177–1192.PubMedGoogle Scholar
  21. Kauffman, T., Théoret, H., &Pascual-Leone, A. (2002). Braille character discrimination in blindfolded human subjects.NeuroReport,13, 571–574.PubMedCrossRefGoogle Scholar
  22. Lessard, N., Paré, M., Lepore, F., &Lassonde, M. (1998). Early-blind human subjects localize sound sources better than sighted subjects.Nature,395, 278–280.PubMedCrossRefGoogle Scholar
  23. Levänen, S., &Hamdorf, D. (2001). Feeling vibrations: Enhanced tactile sensitivity in congenitally deaf humans.Neuroscience Letters,301, 75–77.PubMedCrossRefGoogle Scholar
  24. Levänen, S., Jousmaki, V., &Hari, R. (1998). Vibration-induced auditory-cortex activation in a congenitally deaf adult.Current Biology,8, 869–872.PubMedCrossRefGoogle Scholar
  25. Levitt, H. (1970). Transformed up-down methods in psychoacoustics.Journal of the Acoustical Society of America,49, 467–477.CrossRefGoogle Scholar
  26. Macaluso, E., Frith, C. D., &Driver, J. (2002). Crossmodal spatial influences of touch on extrastriate visual areas take current gaze direction into account.Neuron,34, 647–658.PubMedCrossRefGoogle Scholar
  27. Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory.Neuropsychologia,9, 97–113.PubMedCrossRefGoogle Scholar
  28. Pascual-Leone, A., &Hamilton, R. (2001). The metamodal organization of the brain.Progress in Brain Research,134, 427–445.PubMedCrossRefGoogle Scholar
  29. Pascual-Leone, A., &Torres, F. (1993). Plasticity of the sensorimotor cortex representation of the reading finger in Braille readers.Brain,116, 39–52.PubMedCrossRefGoogle Scholar
  30. Phillips, J. R., &Johnson, K. O. (1981). Tactile spatial resolution: II. Neural representation of bars, edges, and gratings in monkey primary afferents.Journal of Neurophysiology,46, 1192–1203.PubMedGoogle Scholar
  31. Proksch, J., &Bavelier, D. (2002). Changes in the spatial distribution of visual attention after early deafness.Journal of Cognitive Neuroscience,14, 687–701.PubMedCrossRefGoogle Scholar
  32. Ragert, P., Schmidt, A., Altenmüller, E., &Dinse, H. R. (2004). Superior tactile performance and learning in professional pianists: Evidence for meta-plasticity in musicians.European Journal of Neuroscience,19, 473–478.PubMedCrossRefGoogle Scholar
  33. Rauschecker, J. P. (2002). Cortical map plasticity in animals and humans.Progress in Brain Research,138, 73–88.PubMedCrossRefGoogle Scholar
  34. Röder, B., Rösler, F., &Spence, C. (2004). Early vision impairs tactile perception in the blind.Current Biology,14, 121–124.PubMedGoogle Scholar
  35. Röder, B., Teder-Sälejärvi, W., Sterr, A., Rösler, F., Hillyard, S. A., &Neville, H. J. (1999). Improved auditory spatial tuning in blind humans.Nature,400, 162–166.PubMedCrossRefGoogle Scholar
  36. Sadato, N., Okada, T., Honda, M., &Yonekura, Y. (2002). Critical period for cross-modal plasticity in blind humans: A functional MRI study.NeuroImage,16, 389–400.PubMedCrossRefGoogle Scholar
  37. Sadato, N., Okada, T., Kubota, K., &Yonekura, Y. (2004). Tactile discrimination activates the visual cortex of the recently blind naive to Braille: A functional magnetic resonance imaging study in humans.Neuroscience Letters,359, 49–52.PubMedCrossRefGoogle Scholar
  38. Sadato, N., Pascual-Leone, A., Grafman, J., Deiber, M. P., Ibañez, V., &Hallett, M. (1998). Neural networks for Braille reading by the blind.Brain,121, 1213–1229.PubMedCrossRefGoogle Scholar
  39. Sterr, A., Müller, M., Elbert, T., Rockstroh, B., &Taub, E. (1999). Development of cortical reorganization in the somatosensory cortex of adult Braille students.Electroencephalography & Clinical Neurophysiology,49(Suppl.), 292–298.Google Scholar
  40. Stevens, J. C., Foulke, E., &Patterson, M. Q. (1996). Tactile acuity, aging, and Braille reading in long-term blindness.Journal of Experimental Psychology: Applied,2, 91–106.CrossRefGoogle Scholar
  41. Stevens, J. C., &Patterson, M. Q. (1995). Dimensions of spatial acuity in the touch sense: Changes over the life span.Somatosensory & Motor Research,12, 29–47.CrossRefGoogle Scholar
  42. Van Boven, R. W., Hamilton, R. H., Kauffman, T., Keenan, J. P., &Pascual-Leone, A. (2000). Tactile spatial resolution in blind Braille readers.Neurology,54, 2230–2236.PubMedGoogle Scholar
  43. Warren, D. H. (1978). Perception by the blind. In E. C. Carterette & M. P. Friedman (Eds.),Perceptual ecology (Handbook of Perception, Vol. 10, pp. 65–90). New York: Academic Press.Google Scholar
  44. Weeks, R., Horwitz, B., Aziz-Sultan, A., Tian, B., Wessinger, C. M., Cohen, L. G., et al. (2000). A positron emission tomographic study of auditory localization in the congenitally blind.Journal of Neuroscience,20, 2664–2672.PubMedGoogle Scholar
  45. Wheat, H. E., &Goodwin, A. W. (2000). Tactile discrimination of gaps by slowly adapting afferents: Effects of population parameters and anisotropy in the fingerpad.Journal of Neurophysiology,84, 1430–1444.PubMedGoogle Scholar
  46. Wittenberg, G. F., Werhahn, K. J., Wassermann, E. M., Herscovitch, P., &Cohen, L. G. (2004). Functional connectivity between somatosensory and visual cortex in early blind humans.European Journal of Neuroscience,20, 1923–1927.PubMedCrossRefGoogle Scholar
  47. Woodward, K. L. (1993). The relationship between skin compliance, age, gender, and tactile discriminative thresholds in humans.Somatosensory & Motor Research,10, 63–67.CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2006

Authors and Affiliations

  1. 1.Duquesne UniversityPittsburgh
  2. 2.Department of Psychology, Neuroscience & BehaviourMcMaster UniversityHamiltonCanada

Personalised recommendations