Perception & Psychophysics

, Volume 68, Issue 7, pp 1124–1139

Binocular shape constancy from novel views: The role of a priori constraints

  • Moses W. Chan
  • Adam K. Stevenson
  • Yunfeng Li
  • Zygmunt Pizlo
Article
  • 319 Downloads

Abstract

We tested shape constancy from novel views in the case of binocular viewing, using a variety of stimuli, including polyhedra, polygonal lines, and points in 3-D. The results of the psychophysical experiments show that constraints such as planarity of surface contours and symmetry are critical for reliable shape constancy. These results are consistent with the results obtained in our previous psychophysical experiments on shape constancy from novel views in the presence of a kinetic depth effect (Pizlo & Stevenson, 1999). On the basis of these results, we developed a new model of binocular shape reconstruction. The model is based on the assumption that binocular reconstruction is a difficult inverse problem, whose solution requires imposing a priori constraints on the family of possible interpretations. In the model, binocular disparity is used to correct monocularly reconstructed shape. The new model was tested on the same shapes as those used in the psychophysical experiments. The reconstructions produced by this model are substantially more reliable than the reconstructions produced by models that do not use constraints. Interestingly, monocular (but not binocular) reconstructions produced by this model correlate well with both monocular and binocular performance of human subjects. This fact suggests that binocular and monocular reconstructions of shapes in the human visual system involve similar mechanisms based on monocular shape constraints.

References

  1. Anstis S. M. (1974). A chart demonstrating variations in acuity with retinal position.Vision Research,14, 589–592.PubMedCrossRefGoogle Scholar
  2. Attneave F., &Frost, R. (1969). The determination of perceived tridimensional orientation by minimum criteria.Perception & Psychophysics,6, 391–396.CrossRefGoogle Scholar
  3. Biederman, I. (1987). Recognition by components: A theory of human image understanding.Psychological Review,94, 115–147.PubMedCrossRefGoogle Scholar
  4. Biederman, I., &Gerhardstein, P. C. (1993). Recognizing depthrotated objects: Evidence and conditions for three-dimensional viewpoint invariance.Journal of Experimental Psychology: Human Perception & Performance,19, 1162–1182.CrossRefGoogle Scholar
  5. Chan, M. W. (1999).A psychologically plausible algorithm for binocular shape reconstruction. Unpublished doctoral dissertation, Purdue University.Google Scholar
  6. Chan, M. W., Pizlo, Z., &Chelberg, D. M. (1999). Binocular shape reconstruction: Psychological plausibility of the 8-point algorithm.Computer Vision & Image Understanding,74, 121–137.CrossRefGoogle Scholar
  7. Faugeras, O. (1993).Three-dimensional computer vision: A geometric viewpoint. Cambridge, MA: MIT Press.Google Scholar
  8. Hartley, R. I., &Sturm, P. (1997). Triangulation.Computer Vision & Image Understanding,68, 146–157.CrossRefGoogle Scholar
  9. Hochberg, J., &Brooks, V. (1960). The psychophysics of form: Reversible perspective drawings of spatial objects.American Journal of Psychology,73, 337–355.PubMedCrossRefGoogle Scholar
  10. Hochberg, J., &McAlister, E. (1953). A quantitative approach to figural ‘goodness.’Journal of Experimental Psychology,46, 361–364.PubMedCrossRefGoogle Scholar
  11. Julesz, B. (1971).Foundations of cyclopean perception. Chicago: Chicago University Press.Google Scholar
  12. Kersten, D., Mamassian, P., &Yuille, A. (2004). Object perception as Bayesian inference.Annual Review of Psychology,55, 271–304.PubMedCrossRefGoogle Scholar
  13. Koenderink, J. J., van Doorn, A. J., &Kappers, A. M. L. (1992). Surface perception in pictures.Perception & Psychophysics,52, 487–496.CrossRefGoogle Scholar
  14. Leclerc, Y. G. (1989). Constructing simple stable descriptions for image partitioning.International Journal of Computer Vision,3, 73–102.CrossRefGoogle Scholar
  15. Leclerc, Y. G., &Fischler, M. A. (1992). An optimization-based approach to the interpretation of single line drawings as 3-D wire frames.International Journal of Computer Vision,9, 113–136.CrossRefGoogle Scholar
  16. Levi, D. M., &Klein, S. A. (1990). The role of separation and eccentricity in encoding position.Vision Research,30, 557–585.PubMedCrossRefGoogle Scholar
  17. Liu, Z., &Kersten, D. (2003). Three-dimensional symmetric shapes are discriminated more efficiently than asymmetric ones.Journal of the Optical Society of America A,20, 1331–1340.CrossRefGoogle Scholar
  18. Longuet-Higgins, H. C. (1981). A computer algorithm for reconstructing a scene from two projections.Nature,293, 133–135.CrossRefGoogle Scholar
  19. Macmillan, N. A., &Creelman, C. D. (2005).Detection theory: A user's guide (2nd ed.). Mahwah, NJ: Erlbaum.Google Scholar
  20. Marill, T. (1991). Emulating the human interpretation of line-drawings as three-dimensional objects.International Journal of Computer Vision,6, 147–161.CrossRefGoogle Scholar
  21. McKee, S. P., Levi, D. M., &Bowne, S. F. (1990). The imprecision of stereopsis.Vision Research,30, 1763–1779.PubMedCrossRefGoogle Scholar
  22. Mitchison, G. (1988). Planarity and segmentation in stereoscopic matching.Perception,17, 753–782.PubMedCrossRefGoogle Scholar
  23. Norman, J. F., Todd, J. T., Perotti, V. J., &Tittle, J. S. (1996). The visual perception of three-dimensional length.Journal of Experimental Psychology: Human Perception & Performance,22, 173–186.CrossRefGoogle Scholar
  24. Perkins, D. N. (1972). Visual discrimination between rectangular and nonrectangular parallelopipeds.Perception & Psychophysics,12, 396–400.CrossRefGoogle Scholar
  25. Perkins, D. N. (1982). The perceiver as organizer and geometer. In J. Beck (Ed.),Organization and representation in perception (pp. 73–93). Hillsdale, NJ: Erlbaum.Google Scholar
  26. Pizlo, Z. (2001). Perception viewed as an inverse problem: A minireview.Vision Research,41, 3145–3161.PubMedCrossRefGoogle Scholar
  27. Pizlo, Z., Li, Y., &Chan, M. (2005). Regularization model of human binocular vision. InProceedings of IS&T/SPIE Conference on Computational Imaging (Vol. 5674, pp. 229–240). Bellingham, WA: International Society for Optical Engineering.Google Scholar
  28. Pizlo, Z., Li, Y., &Francis, G. (2005). A new look at binocular stereopsis.Vision Research,45, 2244–2255.PubMedCrossRefGoogle Scholar
  29. Pizlo, Z., Rosenfeld, A., &Epelboim, J. (1995). An exponential pyramid model of the time-course of size processing.Vision Research,35, 1089–1107.PubMedCrossRefGoogle Scholar
  30. Pizlo, Z., Rosenfeld, A., &Weiss, I. (1995). Interdisciplinary study of visual invariants. In D. Dori & A. Bruckstein (Eds.),Shape, structure and pattern recognition (pp. 118–127). Singapore: World Scientific.Google Scholar
  31. Pizlo, Z., Rosenfeld, A., &Weiss, I. (1997). The geometry of visual space: About the incompatibility between science and mathematics. Dialogue.Computer Vision & Image Understanding,65, 425–433.CrossRefGoogle Scholar
  32. Pizlo, Z., &Stevenson, A. K. (1999). Shape constancy from novel views.Perception & Psychophysics,61, 1299–1307.CrossRefGoogle Scholar
  33. Poggio, T., Torre, V., &Koch, C. (1985). Computational vision and regularization theory.Nature,317, 314–319.PubMedCrossRefGoogle Scholar
  34. Pomerantz, J. R., &Kubovy, M. (1986). Theoretical approaches to perceptual organization. In K. R. Boff, L. Kaufman, & J. P. Thomas (Eds.),Handbook of perception and human performance: Vol. 2. Cognitive processes and performance (pp. 36-1 to 36–46). New York: Wiley.Google Scholar
  35. Rawlings, S. C., &Shipley, T. (1969). Stereoscopic acuity and horizontal angular distance from fixation.Journal of the Optical Society of America,59, 991–993.PubMedGoogle Scholar
  36. Regan, D. (2000). Human perception of objects. Sunderland, MA: Sinauer.Google Scholar
  37. Rock, I., &DiVita, J. (1987). A case of viewer-centered object perception.Cognitive Psychology,19, 280–293.PubMedCrossRefGoogle Scholar
  38. Rock, I., Wheeler, D., &Tudor, L. (1989). Can we imagine how objects look from other viewpoints?Cognitive Psychology,21, 185–210.PubMedCrossRefGoogle Scholar
  39. Shepard, R. N., &Cooper, L. A. (1982).Mental images and their transformations. Cambridge, MA: MIT Press.Google Scholar
  40. Sinha, P., &Adelson, E. H. (1992). Recovery of 3-D shape from 2-D wireframe drawings [Abstract].Investigative Ophthalmology & Visual Science,33, 825.Google Scholar
  41. Tjan, B. S., &Legge, G. E. (1998). The viewpoint complexity of an object-recognition task.Vision Research,38, 2335–2350.PubMedCrossRefGoogle Scholar
  42. Vetter, T., Poggio, T., &Bülthoff, H. H. (1994). The importance of symmetry and virtual views in three-dimensional object recognition.Current Biology,4, 18–23.PubMedCrossRefGoogle Scholar
  43. Witkin, A., Terzopoulos, D., &Kaas, M. (1987). Signal matching through scale space.International Journal of Computer Vision,1, 133–144.CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2006

Authors and Affiliations

  • Moses W. Chan
    • 1
  • Adam K. Stevenson
    • 1
  • Yunfeng Li
    • 1
  • Zygmunt Pizlo
    • 1
  1. 1.Department of Psychological SciencesPurdue UniversityWest Lafayette

Personalised recommendations