Perception & Psychophysics

, Volume 68, Issue 3, pp 489–504 | Cite as

Criteria for unconscious cognition: Three types of dissociation

  • Thomas SchmidtEmail author
  • Dirk VorbergEmail author


To demonstrate unconscious cognition, researchers commonly compare a direct measure (D) of awareness for a critical stimulus with an indirect measure (I) showing that the stimulus was cognitively processed at all. We discuss and empirically demonstrate three types of dissociation with distinct appearances inD-I plots, in which direct and indirect effects are plotted against each other in a shared effect size metric. Simple dissociations betweenD andI occur whenI has some nonzero value andD is at chance level; the traditional requirement of zero awareness is necessary for this criterion only.Sensitivity dissociations only require thatI be larger thanD; double dissociations occur when some experimental manipulation has opposite effects onI andD. We show that double dissociations require much weaker measurement assumptions than do other criteria. Several alternative approaches can be considered special cases of our framework.


Stimulus Onset Asynchrony Double Dissociation Critical Stimulus Prime Duration Direct Task 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Auster, P. (1997).Hand to mouth: A chronicle of early failure. New York: Holt.Google Scholar
  2. Bamber, D. (1975). The area above the ordinal dominance graph and the area below the receiver operating characteristic graph.Journal of Mathematical Psychology,12, 387–415.CrossRefGoogle Scholar
  3. Breitmeyer, B. (1984).Visual masking: An integrative approach. Oxford: Oxford University Press.Google Scholar
  4. Cheesman, J., &Merikle, P. M. (1984). Priming with and without awareness.Perception & Psychophysics,36, 387–395.Google Scholar
  5. Dehaene, S., Naccache, L., Le Clec'H, G., Koechlin, E., Mueller, M., Dehaene-Lambertz, G., et al. (1998). Imaging unconscious semantic priming.Nature,395, 597–600.PubMedCrossRefGoogle Scholar
  6. Di Lollo, V., Enns, J. T., &Rensink, R. A. (2000). Competition for consciousness among visual events: The psychophysics of reentrant visual processes.Journal of Experimental Psychology: General,129, 481–507.CrossRefGoogle Scholar
  7. Dosher, B. A. (1998). The response-window regression method: Some problematic assumptions.Journal of Experimental Psychology: General,127, 311–317.CrossRefGoogle Scholar
  8. Draine, S. C., &Greenwald, A. G. (1998). Replicable unconscious semantic priming.Journal of Experimental Psychology: General,127, 286–303.CrossRefGoogle Scholar
  9. Dunn, J. C., &Kirsner, K. (1988). Discovering functionally independent mental processes: The principle of reversed association.Psychological Review,95, 91–101.PubMedCrossRefGoogle Scholar
  10. Eimer, M., &Schlaghecken, F. (1998). Effects of masked stimuli on motor activation: Behavioral and electrophysiological evidence.Journal of Experimental Psychology: Human Perception & Performance,24, 1737–1747.CrossRefGoogle Scholar
  11. Erdelyi, M. H. (2004). Subliminal perception and its cognates: Theory, indeterminacy, and time.Consciousness & Cognition,13, 73–91.CrossRefGoogle Scholar
  12. Eriksen, C. W. (1960). Discrimination and learning without awareness: A methodological survey and evaluation.Psychological Review,67, 279–300.PubMedCrossRefGoogle Scholar
  13. Francis, G. (1997). Cortical dynamics of lateral inhibition: Metacontrast masking.Psychological Review,104, 572–594.PubMedCrossRefGoogle Scholar
  14. Greenwald, A. G., Klinger, M. R., &Schuh, E. S. (1995). Activation by marginally perceptible (“subliminal”) stimuli: Dissociation of unconscious from conscious cognition.Journal of Experimental Psychology: General,124, 22–42.CrossRefGoogle Scholar
  15. Hirshman, E. (2004). Ordinal process-dissociation and the measurement of automatic and controlled processes.Psychological Review,111, 553–560.PubMedCrossRefGoogle Scholar
  16. Holender, D. (1986). Semantic activation without conscious identification in dichotic listening, parafoveal vision, and visual masking: A survey and appraisal.Behavioral & Brain Sciences,9, 1–23.CrossRefGoogle Scholar
  17. Holender, D., &Duscherer, K. (2004). Unconscious perception: The need for a paradigm shift.Perception & Psychophysics,66, 872–881.CrossRefGoogle Scholar
  18. Jacoby, L. L. (1991). A process dissociation framework: Separating automatic from intentional uses of memory.Journal of Memory & Language,30, 513–541.CrossRefGoogle Scholar
  19. Jacoby, L. L. (1998). Invariance in automatic influences of memory: Toward a user's guide for the process-dissociation procedure.Journal of Experimental Psychology: Learning, Memory, & Cognition,24, 3–26.CrossRefGoogle Scholar
  20. Jaskowski, P., van der Lubbe, R. H. J., Schlotterbeck, E., &Verleger, R. (2002). Traces left on visual selective attention by stimuli that are not consciously identified.Psychological Science,13, 48–54.PubMedCrossRefGoogle Scholar
  21. Klauer, K. C., Draine, S. C., &Greenwald, A. G. (1998). An unbiased errors-in-variables approach to detecting unconscious cognition.British Journal of Mathematical & Statistical Psychology,51, 253–267.Google Scholar
  22. Klotz, W., &Neumann, O. (1999). Motor activation without conscious discrimination in metacontrast masking.Journal of Experimental Psychology: Human Perception & Performance,25, 976–992.CrossRefGoogle Scholar
  23. Kunst-Wilson, W. R., &Zajonc, R. B. (1980). Affective discrimination of stimuli that cannot be recognized.Science,207, 557–558.PubMedCrossRefGoogle Scholar
  24. Lamme, V. A. F. (2002). Neural mechanisms of visual awareness: A linking proposition.Brain & Mind,1, 385–406.CrossRefGoogle Scholar
  25. Lamme, V. A. F., &Roelfsema, P. R. (2000). The distinct modes of vision offered by feedforward and recurrent processing.Trends in Neurosciences,23, 571–579.PubMedCrossRefGoogle Scholar
  26. Loftus, G. R., &Masson, M. E. J. (1994). Using confidence intervals in within-subject designs.Psychonomic Bulletin & Review,1, 476–490.Google Scholar
  27. Luce, R. D., Bush, R. R., &Galanter, E. (Eds.) (1963).Handbook of mathematical psychology (Vol. 1). New York: Wiley.Google Scholar
  28. Macmillan, N. A. (1986). The psychophysics of subliminal perception.Behavioral & Brain Sciences,9, 38–39.CrossRefGoogle Scholar
  29. Macmillan, N. A., &Creelman, C. D. (2005).Detection theory: A user's guide (2nd ed.). Mahwah, NJ: Erlbaum.Google Scholar
  30. Marcel, A. J. (1983). Conscious and unconscious perception: Experiments on visual masking and word recognition.Cognitive Psychology,15, 197–237.PubMedCrossRefGoogle Scholar
  31. Mattler, U. (2003). Priming of mental operations by masked stimuli.Perception & Psychophysics,65, 167–187.CrossRefGoogle Scholar
  32. Merikle, P. M., &Cheesman, J. (1987). Current status of research on subliminal perception. In M. Wallendorf & P. F. Anderson (Eds.),Advances in consumer research (Vol. 14, pp. 298–302). Provo, UT: Association for Consumer Research.Google Scholar
  33. Merikle, P. M., &Joordens, S. (1997a). Measuring unconscious influences. In J. D. Cohen & J. W. Schooler (Eds.),Scientific approaches to consciousness (pp. 109–123). Mahwah, NJ: Erlbaum.Google Scholar
  34. Merikle, P. M., &Joordens, S. (1997b). Parallels between perception without attention and perception without awareness.Consciousness & Cognition,6, 219–236.CrossRefGoogle Scholar
  35. Merikle, P. M., &Reingold, E. M. (1998). On demonstrating unconscious perception: Comment on Draine and Greenwald (1998).Journal of Experimental Psychology: General,127, 304–310.CrossRefGoogle Scholar
  36. Miller, J. (2000). Measurement error in subliminal perception experiments: Simulation analyses of two regression methods.Journal of Experimental Psychology: Human Perception & Performance,26, 1461–1477.CrossRefGoogle Scholar
  37. Murphy, K. R., &Myors, B. (1998).Statistical power analysis: A simple and general model for traditional and modern hypothesis tests. Mahwah, NJ: Erlbaum.Google Scholar
  38. Neumann, O., &Klotz, W. (1994). Motor responses to nonreportable, masked stimuli: Where is the limit of direct parameter specification? In C. Umiltà & M. Moscovitch (Eds.),Attention and performance XV: Conscious and nonconscious information processing (pp. 123–150). Cambridge, MA: MIT Press, Bradford Books.Google Scholar
  39. Reingold, E. M. (2004). Unconscious perception and the classic dis sociation paradigm: A new angle?Perception & Psychophysics,66, 882–887.CrossRefGoogle Scholar
  40. Reingold, E. M., &Merikle, P. M. (1988). Using direct and indirect measures to study perception without awareness.Perception & Psychophysics,44, 563–575.Google Scholar
  41. Reingold, E. M., &Merikle, P. M. (1990). On the inter-relatedness of theory and measurement in the study of unconscious processes.Mind & Language,5, 9–28.CrossRefGoogle Scholar
  42. Reingold, E. M., &Merikle, P. M. (1993). Theory and measurement in the study of unconscious processes. In M. Davies & G. W. Humphreys (Eds.),Consciousness: Psychological and philosophical essays (pp. 40–57). Oxford: Blackwell.Google Scholar
  43. Schmidt, T. (2000). Visual perception without awareness: Priming responses by color. In T. Metzinger (Ed.),Neural correlates of consciousness (pp. 157–170). Cambridge, MA: MIT Press.Google Scholar
  44. Schmidt, T. (2002). The finger in flight: Real-time motor control by visually masked color stimuli.Psychological Science,13, 112–118.PubMedCrossRefGoogle Scholar
  45. Schmidt, T., Niehaus, S., & Nagel, A. (2006). Primes and targets in rapid chases: Tracing sequential waves of motor activation. Manuscript submitted for publication.Google Scholar
  46. Shallice, T. (1979). Case study approach in neuropsychological research.Journal of Clinical Neuropsychology,1, 183–211.CrossRefGoogle Scholar
  47. Shanks, D. R., &St. John, M. F. (1994). Characteristics of dissociable human learning systems.Behavioral & Brain Sciences,17, 367–447.CrossRefGoogle Scholar
  48. Snodgrass, M., Bernat, E., &Shevrin, H. (2004). Unconscious perception: A model-based approach to method and evidence.Perception & Psychophysics,66, 846–867.CrossRefGoogle Scholar
  49. Teuber, H.-L. (1955). Physiological psychology.Annual Review of Psychology,6, 267–296.PubMedCrossRefGoogle Scholar
  50. Vorberg, D. (2004). [Monte Carlo simulations of effect size measures]. Unpublished raw data.Google Scholar
  51. Vorberg, D., Mattler, U., Heinecke, A., Schmidt, T., &Schwarzbach, J. (2003). Different time courses for visual perception and action priming.Proceedings of the National Academy of Sciences,100, 6275–6280.CrossRefGoogle Scholar
  52. Vorberg, D., Mattler, U., Heinecke, A., Schmidt, T., &Schwarzbach, J. (2004). Invariant time-course of priming with and without awareness. In C. Kaernbach, E. Schröger, & H. Müller (Eds.),Psychophysics beyond sensation: Laws and invariants of human cognition (pp. 271–288). Mahwah, NJ: Erlbaum.Google Scholar
  53. Wilcox, R. R. (1997).Introduction to robust estimation and hypothesis testing. New York: Academic Press.Google Scholar

Copyright information

© Psychonomic Society, Inc. 2006

Authors and Affiliations

  1. 1.Abteilung Allgemeine PsychologieUniversität GießenGießenGermany
  2. 2.Institut für PsychologieTechnische Universität BraunschweigBraunschweigGermany

Personalised recommendations