Perception & Psychophysics

, Volume 67, Issue 7, pp 1289–1303

Comparing and unifying slope estimates across psychometric function models

  • James M. Gilchrist
  • David Jerwood
  • H. Sam Ismaiel
Article
  • 418 Downloads

Abstract

The psychometric function relating stimulus intensity to response probability generally presents itself as a monotonically increasing sigmoid profile. Two summary parameters of the function are particularly important as measures of perceptual performance: the threshold parameter, which defines the location of the function over the stimulus axis (abscissa), and the slope parameter, which defines the (local) rate at which response probability increases with increasing stimulus intensity. In practice, the psychometric function may be modeled by a variety of mathematical structures, and the resulting algebraic expression describing the slope parameter may vary considerably between different functions fitted to the same experimental data. This variation often restricts comparisons between studies that select different functions and compromises the general interpretation of slope values. This article reviews the general characteristics of psychometric function models, discusses three strategies for resolving the issue of slope value differences, and presents mathematical expressions for implementing each strategy.

References

  1. Acklam, P. J. (2004).An algorithm for computing the inverse normal cumulative distribution function. Retrieved November 12, 2004, from http://home.online.no/~pjacklam/notes/invnorm.Google Scholar
  2. Berkson, J. (1951). Why I prefer logits to probits.Biometrics,7, 327–339.CrossRefGoogle Scholar
  3. Blackwell, H. R. (1953). Studies of the form of visual threshold data.Journal of the Optical Society of America,43, 456–463.CrossRefPubMedGoogle Scholar
  4. Chauhan, B. C., Tompkins, J. D., LeBlanc, R. P., &McCormick, T. A. (1993). Characteristics of frequency-of-seeing curves in normal subjects, patients with suspected glaucoma, and patients with glaucoma.Investigative Ophthalmology & Visual Science,34, 3534–3540.Google Scholar
  5. Evans, M., Hastings, N., &Peacock, B. (1993).Statistical distributions (2nd ed.). New York: Wiley.Google Scholar
  6. García-Pérez, M. A. (1998). Forced-choice staircases with fixed step sizes: Asymptotic and small sample properties.Vision Research,38, 1861–1881.CrossRefPubMedGoogle Scholar
  7. García-Pérez, M. A. (2001). Yes-no staircases with fixed step sizes: Psychometric properties and optimal setup.Optometry & Vision Science,78, 56–64.CrossRefGoogle Scholar
  8. Green, D. M., Richards, V. M., &Forrest, T. G. (1989). Stimulus step size and heterogeneous stimulus conditions in adaptive psychophysics.Journal of the Acoustical Society of America,86, 629–636.CrossRefGoogle Scholar
  9. Green, D. M., &Swets, J. A. (1966).Signal detection theory and psychophysics. Los Altos, CA: Peninsula.Google Scholar
  10. Harvey, L. O., Jr. (1986). Efficient estimation of sensory thresholds.Behavior Research Methods, Instruments, & Computers,18, 623–632.Google Scholar
  11. Kaernbach, C. (2001). Slope bias of psychometric functions derived from adaptive data.Perception & Psychophysics,63, 1389–1398.Google Scholar
  12. King-Smith, P. E., &Rose, D. (1997). Principles of an adaptive method for measuring the slope of the psychometric function.Vision Research,37, 1595–1604.CrossRefPubMedGoogle Scholar
  13. Klein, S. A. (2001). Measuring, estimating, and understanding the psychometric function: A commentary.Perception & Psychophysics,63, 1421–1455.Google Scholar
  14. Kontsevich, L. L., &Tyler, C. W. (1999). Bayesian adaptive estimation of psychometric slope and threshold.Vision Research,39, 2729–2737.CrossRefPubMedGoogle Scholar
  15. Laming, D. (1986).Sensory analysis. London: Academic Press.Google Scholar
  16. Lipetz, L. E. (1969). The transfer functions of sensory intensity in the nervous system.Vision Research,9, 1205–1234.CrossRefPubMedGoogle Scholar
  17. Macmillan, N. A., &Creelman, C. D. (1991).Detection theory: A user’s guide. Cambridge: Cambridge University Press.Google Scholar
  18. Nachmias, J. (1981). On the psychometric function for contrast detection.Vision Research,21, 215–223.CrossRefPubMedGoogle Scholar
  19. Naka, K. I., &Rushton, W. A. H. (1966). S-potentials from colour units in the retina of fish (Cyprinidae).Journal of Physiology,185, 536–555.PubMedGoogle Scholar
  20. Patterson, V. H., Foster, D. H., &Heron, J. R. (1980). Variability of visual threshold in multiple sclerosis: Effect of background luminance on frequency of seeing.Brain,103, 139–147.CrossRefPubMedGoogle Scholar
  21. Pelli, D. G. (1987). On the relation between summation and facilitation.Vision Research,27, 119–123.CrossRefPubMedGoogle Scholar
  22. Quick, R. F. (1974). A vector magnitude model for contrast detection.Kybernetik,16, 65–67.CrossRefPubMedGoogle Scholar
  23. Snoeren, P. R., &Puts, M. J. H. (1997). Multiple parameter estimation in an adaptive psychometric method: MUEST, an extension of the QUEST method.Journal of Mathematical Psychology,41, 431–439.CrossRefPubMedGoogle Scholar
  24. Strasburger, H. (2001a). Converting between measures of slope of the psychometric function.Perception & Psychophysics,63, 1348–1355.Google Scholar
  25. Strasburger, H. (2001b). Invariance of the psychometric function for character recognition across the visual field.Perception & Psychophysics,63, 1356–1376.Google Scholar
  26. Treutwein, B. (1995). Adaptive psychophysical procedures.Vision Research,35, 2503–2522.PubMedGoogle Scholar
  27. Treutwein, B., &Strasburger, H. (1999). Fitting the psychometric function.Perception & Psychophysics,61, 87–106.Google Scholar
  28. Tyler, C. W. (1997). Why we need to pay attention to psychometric function slopes.OSA Technical Digest Series,1, 29–32.Google Scholar
  29. Watson, A. B. (1979). Probability summation over time.Vision Research,19, 515–522.CrossRefPubMedGoogle Scholar
  30. Watson, A. B., &Pelli, D. G. (1983). QUEST: A Bayesian adaptive psychometric method.Perception & Psychophysics,33, 113–120.Google Scholar
  31. Weibull, W. (1951). A statistical distribution function of wide applicability.Journal of Applied Mechanics,18, 292–297.Google Scholar
  32. Wichmann, F. A., &Hill, N. J. (2001). The psychometric function: I. Fitting, sampling, and goodness of fit.Perception & Psychophysics,63, 1293–1313.Google Scholar
  33. Wilson, H. R. (1980). A transducer function for threshold and suprathreshold human vision.Biological Cybernetics,38, 171–178.CrossRefPubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2005

Authors and Affiliations

  • James M. Gilchrist
    • 1
  • David Jerwood
    • 1
  • H. Sam Ismaiel
    • 1
  1. 1.Department of OptometryUniversity of BradfordBradfordUK

Personalised recommendations