Animal Learning & Behavior

, Volume 30, Issue 1, pp 43–52 | Cite as

Discrimination of individual vocalizations by black-capped chickadees (Poecile atricapilla)

  • Leslie S. Phillmore
  • Christopher B. Sturdy
  • Martha-Rae M. Turyk
  • Ronald G. Weisman
Article

Abstract

The auditory perceptual abilities of male black-capped chickadees (Poecile atricapilla) were examined using an operant go/no-go discrimination among 16 individual vocalizations recorded at 5 m. The birds learned to discriminate about equally well among eight male chickadee fee-bee songs and eight female zebra finch (Taeniopygia guttata) distance calls. These results do not indicate that chickadees have a species-specific advantage in individual recognition for conspecific over heterospecific vocalizations. We then transferred the chickadees to a discrimination of the same songs and calls rerecorded at a moderate distance. These results showed accurate transfer of discrimination from 16 vocalizations recorded at 5 m to novel versions of the same 16 songs and calls rerecorded at 25 m. That is, chickadees recognized individual songs and calls despite degradation produced by rerecording at 25 m. Identifying individual vocalizations despite their transformation by distance cues is here described as a biologically important example of perceptual constancy.

References

  1. Astley, S. L., &Wasserman, E. A. (1992). Categorical discrimination and generalization in pigeons: All negative stimuli are not created equal.Journal of Experimental Psychology: Animal Behavior Processes,18, 193–207.CrossRefGoogle Scholar
  2. Beecher, M. D., Campbell, S. E., &Burt, J. M. (1994). Song perception in the song sparrow: Birds classify by song type but not by singer.Animal Behaviour,47, 1343–1351.CrossRefGoogle Scholar
  3. Brooks, R. J., &Falls, J. B. (1975). Individual recognition by song in white-throated sparrows: I. Discrimination of songs of neighbors and strangers.Canadian Journal of Zoology,53, 879–888.CrossRefGoogle Scholar
  4. Conover, W. J., &Iman, R. L. (1981). Rank transformations as a bridge between parametric and nonparametric statistics.American Statistician,35, 124–129.CrossRefGoogle Scholar
  5. Dabelsteen, T., Larsen, O. N., &Pedersen, S. B. (1993). Habitat-induced degradation of sound signals: Quantifying the effects of communication sounds and bird location on blur ratio, excess attenuation, and signal-to-noise ratio in blackbirds song.Journal of the Acoustical Society of America,93, 2206–2220.CrossRefGoogle Scholar
  6. Dawson, A., King, V. M., Bentley, G. E., &Ball, G. F. (2001). Photoperiodic control of seasonality in birds.Journal of Biological Rhythms,16, 365–380.CrossRefPubMedGoogle Scholar
  7. Dooling, R. J., Brown, S. D., Klump, G. M., &Okanoya, K. (1992). Auditory perception of conspecific and heterospecific vocalizations in birds: Evidence for special processes.Journal of Comparative Psychology,106, 20–28.CrossRefPubMedGoogle Scholar
  8. Falls, J. B., &Brooks, R. J. (1975). Individual recognition by song in white-throated sparrows: II. Effects of location.Canadian Journal of Zoology,53, 1412–1420.CrossRefGoogle Scholar
  9. Fotheringham, J. R., &Ratcliffe, L. (1995). Song degradation and estimation of acoustic distance in black-capped chickadees (Parus atricapillus).Canadian Journal of Zoology,73, 858–868.CrossRefGoogle Scholar
  10. Gentner, T., &Hulse, S. (1998). Perceptual mechanisms for individual vocal recognition in European starlings,Sturnus vulgaris.Animal Behaviour,56, 579–594.CrossRefPubMedGoogle Scholar
  11. Godard, R., &Wiley, R. H. (1995). Individual recognition of song repertoires in two wood warblers.Behavioral Ecology & Sociobiology,37, 119–123.CrossRefGoogle Scholar
  12. Gottselig, J. M., Wasserman, E. A., &Young, M. E. (2001). Attentional trade-offs in pigeons learning to discriminate newly relevant visual stimulus dimensions.Learning & Motivation,32, 240–253.CrossRefGoogle Scholar
  13. Loesche, P., Stoddard, P. K., Higgins, B. J., &Beecher, M. D. (1991). Signature versus perceptual adaptations for individual vocal recognition in swallows.Behaviour,118, 15–25.CrossRefGoogle Scholar
  14. Lohr, B., &Dooling, R. J. (1998). Detection of changes in timbre and harmonicity in complex sounds by zebra finches (Taeniopygia guttata) and budgerigars (Melopsittacus undulatus).Journal of Comparative Psychology,112, 36–47.CrossRefPubMedGoogle Scholar
  15. McGregor, P. K. (1991). The singer and the song: On the receiving end of bird song.Biological Review,66, 57–81.CrossRefGoogle Scholar
  16. Naguib, M. (1995). Auditory distance assessment of singing conspecifics in Carolina wrens: The role of reverberation and frequency attenuation.Animal Behaviour,50, 1297–1307.CrossRefGoogle Scholar
  17. Naguib, M. (1997). Use of song amplitude for ranging in Carolina wrens,Thryothorus ludovicianus. Ethology,103, 723–731.CrossRefGoogle Scholar
  18. Nelson, B. S., &Stoddard, P. K. (1998) Accuracy of auditory distance and azimuth perception by a passerine bird in natural habitat.Animal Behaviour,56, 467–477.CrossRefPubMedGoogle Scholar
  19. Nelson, D. A. (1989). Song frequency as a cue for recognition of species and individuals in the field sparrow (Spizella pusilla).Journal of Comparative Psychology,103, 171–176.CrossRefPubMedGoogle Scholar
  20. Njegovan, M., Hilhorst, B., Ferguson, S., &Weisman, R. (1994). A motor driven feeder for operant training in song birds.Behavior Research Methods, Instruments, & Computers,26, 26–27.Google Scholar
  21. Njegovan, M., &Weisman, R. (1997). Pitch discrimination in field-and isolation-reared black-capped chickadees (Parus atricapillus).Journal of Comparative Psychology,111, 294–301.CrossRefGoogle Scholar
  22. Nowicki, S. (1989). Vocal plasticity in captive black-capped chickadees: The acoustic basis and rate of call convergence.Animal Behaviour,37, 64–73.CrossRefGoogle Scholar
  23. Otter, K., &Ratcliffe, L. (1993). Changes in singing behavior of male black-capped chickadees (Parus atricapillus) following mate removal.Behavioral Ecology & Sociobiology,133, 409–414.Google Scholar
  24. Phillmore, L., Sturdy, C., Ramsay, S., &Weisman, R. (1998). Discrimination of auditory distance cues by black-capped chickadees (Poecile atricapillus) and zebra finches (Taeniopygia guttata).Journal of Comparative Psychology,112, 282–291.CrossRefGoogle Scholar
  25. Searcy, W. A., McArthur, P. D., Peters, S. S, &Marler, P. (1981). Response of male song and swamp sparrows to neighbor, stranger, and self songs.Behaviour,77, 152–163.CrossRefGoogle Scholar
  26. Shy, E., &Morton, E. S. (1986). The role of distance, familiarity, and time of day in Carolina wrens responses to conspecific songs.Behavioural Ecology & Sociobiology,19, 393–400.CrossRefGoogle Scholar
  27. Slater, P. J. B., &Catchpole, C. K. (1990). Responses of the two chaffinch species on tenerife (Frengilla teyda andF. coelebs tintillon) to playback of the song of their own and the other species.Behaviour,115, 143–152.CrossRefGoogle Scholar
  28. Sokal, R. R. &Rohlf, F. J. (1980).Biometry. New York: Freeman.Google Scholar
  29. Stoddard, P. K., Beecher, M. D., Loesche, P., &Campbell, S. E. (1992). Memory does not constrain individual recognition in a bird with song repertoires.Behaviour,122, 274–287.CrossRefGoogle Scholar
  30. Sturdy, C. B., Phillmore, L. S., Price, J. L., &Weisman, R. G. (1999). Song-note discriminations in zebra finches (Taeniopygia guttata): Categories and pseudocategories.Journal of Comparative Psychology,113, 204–212.CrossRefGoogle Scholar
  31. Sturdy, C. B., Phillmore, L. S., &Weisman, R. G. (2000). Call-note discriminations in black-capped chickadees (Poecile atricapillus).Journal of Comparative Psychology,114, 357–364.CrossRefPubMedGoogle Scholar
  32. Weary, D. M., &Krebs, J. R. (1992). Great tits classify songs by individual voice characteristics.Animal Behaviour,43, 283–287.CrossRefGoogle Scholar
  33. Weary, D. M., Lemon, R. E., &Perreault, S. (1992). Song repertoires do not hinder neighbor-stranger discrimination.Behavioural Ecology & Sociobiology,31, 441–447.CrossRefGoogle Scholar
  34. Weisman, R., Njegovan, M., &Ito, S. (1994). Frequency-ratio discrimination by zebra finches (Taeniopygia guttata) and humans (Homo sapiens).Journal of Comparative Psychology,108, 363–372.CrossRefGoogle Scholar
  35. Weisman, R., Njegovan, M., Sturdy, C., Phillmore, L., Coyle, J., &Mewhort, D. (1998). Frequency range discriminations: Special and general abilities in zebra finches (Taeniopygia guttata) and humans (Homo sapiens).Journal of Comparative Psychology,112, 244–258.CrossRefPubMedGoogle Scholar
  36. Weisman, R., Ratcliffe, L., Johnsrude, I., &Hurley, T. A. (1990). Absolute and relative pitch production in the song of the black-capped chickadee.Condor,92, 118–124.CrossRefGoogle Scholar
  37. Wiley, R. H. (2000). A new sense of the complexities of bird song.Auk,117, 861–868.CrossRefGoogle Scholar
  38. Zann, R. (1984). Structural variation in the zebra finch distance call.Zeitschrift für Tierpsychologie,66, 328–345.Google Scholar

Copyright information

© Psychonomic Society, Inc. 2002

Authors and Affiliations

  • Leslie S. Phillmore
    • 1
  • Christopher B. Sturdy
    • 1
  • Martha-Rae M. Turyk
    • 1
  • Ronald G. Weisman
    • 1
  1. 1.Department of PsychologyQueen’s UniversityKingstonCanada

Personalised recommendations