Behavior Research Methods

, Volume 39, Issue 1, pp 101–117 | Cite as

Multilevel models for the experimental psychologist: Foundations and illustrative examples

Article

Abstract

Although common in the educational and developmental areas, multilevel models are not often utilized in the analysis of data from experimental designs. This article illustrates how multilevel models can be useful with two examples from experimental designs with repeated measurements not involving time. One example demonstrates how to properly examine independent variables for experimental stimuli or individuals that are categorical, continuous, or semicontinuous in the presence of missing data. The second example demonstrates how response times and error rates can be modeled simultaneously within a multivariate model in order to examine speed—accuracy trade-offs at the experimental-condition and individual levels, as well as to examine differences in the magnitude of effects across outcomes. SPSS and SAS syntax for the examples are available electronically.

References

  1. Allen, P. A., Sliwinski, M. J., &Bowie, T. (2002). Differential age effects in semantic and episodic memory: Part II. Slope and intercept analyses.Experimental Aging Research,28, 111–142.CrossRefPubMedGoogle Scholar
  2. Allison, P. D. (1994). Using panel data to estimate the effects of events.Sociological Methods & Research,23, 174–199.CrossRefGoogle Scholar
  3. Cohen, J. (1983). The cost of dichotomization.Applied Psychological Measurement,7, 249–253.CrossRefGoogle Scholar
  4. Diez-Roux, A. V. (2000). Multilevel analysis in public health research.Annual Review of Public Health,21, 171–192.CrossRefPubMedGoogle Scholar
  5. Faust, M. E., Balota, D. A., Spieler, D. H., &Ferraro, F. R. (1999). Individual differences in information-processing rate and amount: Implications for group differences in response latency.Psychological Bulletin,125, 777–799.CrossRefPubMedGoogle Scholar
  6. Fitzmaurice, G., Laird, N. M., & Ware, J. H. (2004).Applied longitudinal analysis. New York: Wiley.Google Scholar
  7. Hoffman, L. (2004). Attentional orienting deficits as a predictor of driving impairment in older adults.Dissertation Abstracts International,65 (4), 2130B.Google Scholar
  8. Hoffman, L., & Atchley, P. (2001, November).Attentional orienting: The costs of age and the benefits of processing speed. Poster presented at the 42nd Annual Meeting of the Psychonomic Society, Orlando, FL.Google Scholar
  9. Huynh, H., &Feldt, L. S. (1980). Performance of traditionalF tests in repeated measures designs under covariance heterogeneity.Communications in Statistics: Theory & Methods,9, 61–74.CrossRefGoogle Scholar
  10. Kreft, I. G. G., de Leeuw, J., &Aiken, L. S. (1995). The effect of different forms of centering in hierarchical linear models.Multivariate Behavioral Research,30, 1–21.CrossRefGoogle Scholar
  11. Laird, N. M., &Ware, J. H. (1982). Random-effects odels for longitudinal data.Biometrics,38, 963–974.CrossRefPubMedGoogle Scholar
  12. Littell, R. C., Milliken, G. A., Stroup, W. W., &Wolfinger, R. D. (1996).SAS system for mixed models. Cary, NC: SAS Institute.Google Scholar
  13. Littell, R. C., Pendergast, J., &Natarajan, R. (2000). Modeling covariance structure in the analysis of repeated measures data.Statistics in Medicine,19, 1793–1819.CrossRefPubMedGoogle Scholar
  14. Lorch, R. F., &Myers, J. L. (1990). Regression analyses of repeated measures data in cognitive research.Journal of Experimental Psychology: Learning, Memory, & Cognition,16, 149–157.CrossRefGoogle Scholar
  15. Maas, C. J. M., &Snijders, T. A. B. (2003). The multilevel approach to repeated measures for complete and incomplete data.Quality & Quantity: International Journal of Methodology,37, 71–89.CrossRefGoogle Scholar
  16. MacCallum, R. C., Zhang, S., Preacher, K. J., &Rucker, D. D. (2002). On the practice of dichotomization of quantitative variables.Psychological Methods,7, 19–40.CrossRefPubMedGoogle Scholar
  17. Maxwell, S. E., &Delaney, H. D. (1993). Bivariate median splits and spurious statistical significance.Psychological Bulletin,113, 181–190.CrossRefGoogle Scholar
  18. Maxwell, S. E., &Delaney, H. D. (2003).Designing experiments and analyzing data: A model comparison perspective (2nd ed.). Mahwah, NJ: Erlbaum.Google Scholar
  19. O’Brien, R. G., &Kaiser, M. K. (1985). MANOVA method for analyzing repeated measures designs: An extensive primer.Psychological Bulletin,97, 316–333.CrossRefPubMedGoogle Scholar
  20. Pringle, H. L., Irwin, D. E., Kramer, A. F., &Atchley, P. (2001). The role of attentional breadth in perceptual change detection.Psychonomic Bulletin & Review,8, 89–95.Google Scholar
  21. Quené, H., &van den Bergh, H. (2004). On multi-level modeling of data from repeated measures designs: A tutorial.Speech Communication,43, 103–121.CrossRefGoogle Scholar
  22. Raaijmakers, J. G. W., Schrijnemakers, J. M. C., &Gremmen, F. (1999). How to deal with the “language-as-fixed-effect fallacy”: Common misconceptions and alternative solutions.Journal of Memory & Language,41, 416–426.CrossRefGoogle Scholar
  23. Raudenbush, S. W., &Bryk, A. S. (2002).Hierarchical linear models: Applications and data analysis methods (2nd ed.). Thousand Oaks, CA: Sage.Google Scholar
  24. Rensink, R. A., O’Regan, J. K., &Clark, J. J. (1997). To see or not to see: The need for attention to perceive changes in scenes.Psychological Science,8, 368–373.CrossRefGoogle Scholar
  25. Rovine, M. J., &von Eye, A. (1991).Applied computational statistics in longitudinal research. Boston: Academic Press.Google Scholar
  26. Sayer, A. G., &Klute, M. M. (2004). Analyzing couples and families. In V. L. Bengtson, A. Acock, K. R. Allen, P. Dilworth-Anderson, & D. M. Klein (Eds.),Sourcebook of family theory and research (pp. 289–314). Thousand Oaks, CA: Sage.Google Scholar
  27. Schafer, J. L. (1997).Analysis of incomplete multivariate data. New York: Chapman and Hall.CrossRefGoogle Scholar
  28. Schafer, J. L., &Graham, J. W. (2002). Missing data: Our view of the state of the art.Psychological Methods,7, 147–177.CrossRefPubMedGoogle Scholar
  29. Singer, J. D. (1998). Using SAS PROC MIXED to fit multilevel models, hierarchical models, and individual growth models.Journal of Educational & Behavioral Statistics,23, 323–355.Google Scholar
  30. Singer, J. D., &Willett, J. B. (2003).Applied longitudinal data analysis: Modeling change and event occurrence. Oxford: Oxford University Press.Google Scholar
  31. Snijders, T. A. B., &Bosker, R. (1999).Multilevel analysis: An introduction to basic and advanced multilevel modeling. Thousand Oaks, CA: Sage.Google Scholar
  32. Wallace, D., &Green, S. B. (2002). Analysis of repeated measures designs with linear mixed models. In D. S. Moskowitz & S. L. Hershberger (Eds.),Modeling intraindividual variability with repeated measures data (pp. 103–134). Mahwah, NJ: Erlbaum.Google Scholar
  33. Wright, D. B. (1998). Modelling clustered data in autobiographical memory research: The multilevel approach.Applied Cognitive Psychology,12, 339–357.CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2007

Authors and Affiliations

  1. 1.Pennsylvania State UniversityState College

Personalised recommendations