Advertisement

Behavior Research Methods

, Volume 37, Issue 4, pp 547–559 | Cite as

Semantic feature production norms for a large set of living and nonliving things

  • Ken McRae
  • George S. Cree
  • Mark S. Seidenberg
  • Chris Mcnorgan
Article

Abstract

Semantic features have provided insight into numerous behavioral phenomena concerning concepts, categorization, and semantic memory in adults, children, and neuropsychological populations. Numerous theories and models in these areas are based on representations and computations involving semantic features. Consequently, empirically derived semantic feature production norms have played, and continue to play, a highly useful role in these domains. This article describes a set of feature norms collected from approximately 725 participants for 541 living (dog) and nonliving (chair) basic-level concepts, the largest such set of norms developed to date. This article describes the norms and numerous statistics associated with them. Our aim is to make these norms available to facilitate other research, while obviating the need to repeat the labor-intensive methods involved in collecting and analyzing such norms. The full set of norms may be downloaded from www.psychonomic.org/archive.

Keywords

Semantic Memory Semantic Feature Feature Norm Dyslexia Feature Correlation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

McRae-BRM-2005.zip (472 kb)
Supplementary material, approximately 340 KB.

References

  1. Ashcraft, M. H. (1978a). Feature dominance and typicality effects in feature statement verification.Journal of Verbal Learning & Verbal Behavior,17, 155–164.CrossRefGoogle Scholar
  2. Ashcraft, M. H. (1978b). Property norms for typical and atypical items from 17 categories: A description and discussion.Memory & Cognition,6, 227–232.CrossRefGoogle Scholar
  3. Barsalou, L. W. (1999). Perceptual symbol systems.Behavioral & Brain Sciences,22, 577–660.Google Scholar
  4. Barsalou, L. W. (2003). Abstraction in perceptual symbol systems.Philosophical Transactions of the Royal Society of London: Series B,358, 1177–1187.CrossRefGoogle Scholar
  5. Barsalou, L. W., Sloman, S. A., &Chaigneau, S. E. (2005). The HIPE theory of function. In L. Carlson & E. van der Zee (Eds.),Representing functional features for language and space: Insights from perception, categorization and development (pp. 131–147). New York: Oxford University Press.Google Scholar
  6. Battig, W. F., &Montague, W. E. (1969). Category norms for verbal items in 56 categories: A replication and extension of the Connecticut category norms.Journal of Experimental Psychology,80 (3, Pt. 2), 1–46.CrossRefGoogle Scholar
  7. Bourne, L. E., Jr., &Restle, F. (1959). Mathematical theory of concept identification.Psychological Review,66, 278–296.CrossRefPubMedGoogle Scholar
  8. Burnard, L. (2000).British National Corpus User Reference Guide Version 2.0. Oxford: Oxford University Computing Service. Retrieved May 20, 2002 from hcu.ox.ac.uk/BNC/World/HTML/urg.html. Data retrieved summer 2001 from http://sara.natcorp.ox.ac.uk.Google Scholar
  9. Collins, A. M., &Loftus, E. F. (1975). A spreading-activation theory of semantic processing.Psychological Review,82, 407–428.CrossRefGoogle Scholar
  10. Cree, G. S., &McRae, K. (2003). Analyzing the factors underlying the structure and computation of the meaning of chipmunk, cherry, chisel, cheese, and cello (and many other such concrete nouns).Journal of Experimental Psychology: General,132, 163–201.CrossRefGoogle Scholar
  11. Cree, G. S., McRae, K., &McNorgan, C. (1999). An attractor model of lexical conceptual processing: Simulating semantic priming.Cognitive Science,23, 371–414.CrossRefGoogle Scholar
  12. Daugherty, K., &Seidenberg, M. S. (1992). Rules or connections? The past tense revisited. InProceedings of the 14th Annual Meeting of the Cognitive Science Society (pp. 259–264). Hillsdale, NJ: Erlbaum.Google Scholar
  13. Davis, C. J. (2005). N-Watch: A program for deriving neighborhood size and other psycholinguistic statistics.Behavior Research Methods,37, 65–70.CrossRefPubMedGoogle Scholar
  14. Devlin, J. T., Gonnerman, L. M., Andersen, E. S., &Seidenberg, M. S. (1998). Category-specific semantic deficits in focal and widespread brain damage: A computational account.Journal of Cognitive Neuroscience,10, 77–94.CrossRefPubMedGoogle Scholar
  15. Garrard, P., Lambon Ralph, M. A., Hodges, J. R., &Patterson, K. (2001). Prototypicality, distinctiveness, and intercorrelation: Analyses of the semantic attributes of living and nonliving concepts.Cognitive Neuropsychology,18, 125–174.PubMedGoogle Scholar
  16. Hampton, J. A. (1979). Polymorphous concepts in semantic memory.Journal of Verbal Learning & Verbal Behavior,18, 441–461.CrossRefGoogle Scholar
  17. Hampton, J. A. (1997). Conceptual combination: Conjunction and negation of natural concepts.Memory & Cognition,25, 888–909.CrossRefGoogle Scholar
  18. Harm, M., &Seidenberg, M. S. (2004). Computing the meanings of words in reading: Cooperative division of labor between visual and phonological processes.Psychological Review,111, 662–720.CrossRefPubMedGoogle Scholar
  19. Hinton, G. E., &Shallice, T. (1991). Lesioning an attractor network: Investigations of acquired dyslexia.Psychological Review,98, 74–95.CrossRefPubMedGoogle Scholar
  20. Hintzman, D. L. (1986). “Schema abstraction” in a multiple-trace memory model.Psychological Review,93, 411–428.CrossRefGoogle Scholar
  21. Jones, S. S., &Smith, L. B. (1993). The place of perception in children’s concepts.Cognitive Development,8, 113–139.CrossRefGoogle Scholar
  22. Keil, F. C. (1989).Concepts, kinds, and cognitive development. Cambridge, MA: MIT Press.Google Scholar
  23. Kučera, H., &Francis, W. N. (1967).A computational analysis of presentday American English. Providence, RI: Brown University Press.Google Scholar
  24. McNorgan, C., Kotack, R. A., Meehan, D. C., & McRae, K. (in press). Feature-feature causal relations and statistical co-occurrences in object concepts.Memory & Cognition.Google Scholar
  25. McRae, K. (2004). Semantic memory: Some insights from featurebased connectionist attractor networks. In B. H. Ross (Ed.),Psychology of learning and motivation (Vol. 45, pp. 41–86). San Diego: Academic Press.Google Scholar
  26. McRae, K., Cree, G. S., Cho, M. J., & McNorgan, C. (2003, September).Distinguishing knowledge of living and nonliving things is computed quickly from concept names, and vice versa. Poster presented at the Thirteenth Conference of the European Society for Cognitive Psychology, Granada, Spain.Google Scholar
  27. McRae, K., Cree, G. S., Westmacott, R., &de Sa, V. R. (1999). Further evidence for feature correlations in semantic memory.Canadian Journal of Experimental Psychology,53, 360–373.PubMedGoogle Scholar
  28. McRae, K., de Sa, V. R., &Seidenberg, M. S. (1997). On the nature and scope of featural representations of word meaning.Journal of Experimental Psychology: General,126, 99–130.CrossRefGoogle Scholar
  29. McRae, K., Ferretti, T. R., &Amyote, L. (1997). Thematic roles as verbspecific concepts.Language & Cognitive Processes,12, 137–176.CrossRefGoogle Scholar
  30. Medin, D. L. (1989). Concepts and conceptual structure.American Psychologist,44, 1469–1481.CrossRefPubMedGoogle Scholar
  31. Medin, D. L., &Schaffer, M. M. (1978). Context theory of classification learning.Psychological Review,85, 207–238.CrossRefGoogle Scholar
  32. Medin, D. L., &Shoben, E. J. (1988). Context and structure in conceptual combination.Cognitive Psychology,20, 158–190.CrossRefPubMedGoogle Scholar
  33. Minda, J. P., &Smith, J. D. (2002). Comparing prototype-based and exemplar-based accounts of category learning and attentional allocation.Journal of Experimental Psychology: Learning, Memory, & Cognition,28, 275–292.CrossRefGoogle Scholar
  34. Moss, H. E., Tyler, L. K., &Devlin, J. T. (2002). The emergence of category-specific deficits in a distributed semantic system. In E. M. E. Forde & G. W. Humphreys (Eds.),Category-specificity in brain and mind (pp. 115–147). East Sussex, U.K.: Psychology Press.Google Scholar
  35. Murdock, B. B. (1982). A theory for the storage and retrieval of item and associative information.Psychological Review,89, 609–626.CrossRefGoogle Scholar
  36. Pecher, D., Zeelenberg, R., &Barsalou, L. W. (2003). Verifying different-modality properties for concepts produces switching costs.Psychological Science,14, 119–124.CrossRefPubMedGoogle Scholar
  37. Pexman, P. M., Holyk, G. G., &Monfils, M.-H. (2003). Number-offeatures effects and semantic processing.Memory & Cognition,31, 842–855.CrossRefGoogle Scholar
  38. Pexman, P. M., Lupker, S. J., &Hino, Y. (2002). The impact of feedback semantics in visual word recognition: Number-of-features effects in lexical decision and naming tasks.Psychonomic Bulletin & Review,9, 542–549.CrossRefGoogle Scholar
  39. Plaut, D. C. (2002). Graded modality-specific specialization in semantics: A computational account of optic aphasia.Cognitive Neuropsychology,19, 603–639.CrossRefPubMedGoogle Scholar
  40. Plaut, D. C., &Shallice, T. (1993). Deep dyslexia: A case study of connectionist neuropsychology.Cognitive Neuropsychology,10, 377–500.CrossRefGoogle Scholar
  41. Rogers, T. T., &McClelland, J. L. (2004).Semantic cognition: A parallel distributed processing approach. Cambridge, MA: MIT Press.Google Scholar
  42. Rosch, E., &Mervis, C. B. (1975). Family resemblances: Studies in the internal structure of categories.Cognitive Psychology,7, 573–605.CrossRefGoogle Scholar
  43. Smith, E. E., &Medin, D. L. (1981).Categories and concepts. Cambridge, MA: Harvard University Press.Google Scholar
  44. Smith, E. E., Osherson, D. N., Rips, L. J., &Keane, M. (1988). Combining prototypes: A selective modification model.Cognitive Science,12, 485–527.CrossRefGoogle Scholar
  45. Smith, E. E., Shoben, E. J., &Rips, L. J. (1974). Structure and process in semantic memory: A feature model for semantic decisions.Psychological Review,81, 214–241.CrossRefGoogle Scholar
  46. Solomon, K. O., &Barsalou, L. W. (2001). Representing properties locally.Cognitive Psychology,43, 129–169.CrossRefPubMedGoogle Scholar
  47. Tversky, A. (1977). Features of similarity.Psychological Review,84, 327–352.CrossRefGoogle Scholar
  48. Vigliocco, G., Vinson, D. P., Lewis, W., &Garrett, M. F. (2004). Representing the meaning of object and action words: The featural and unitary semantic space (FUSS) hypothesis.Cognitive Psychology,48, 422–488.CrossRefPubMedGoogle Scholar
  49. Vinson, D. P., &Vigliocco, G. (2002). A semantic analysis of noun-verb dissociations in aphasia.Journal of Neurolinguistics,15, 317–351.CrossRefGoogle Scholar
  50. Wu, L. L., & Barsalou, L. W. (2004).Grounding concepts in perceptual simulation: 1. Evidence from property generation. Manuscript under review.Google Scholar

Copyright information

© Psychonomic Society, Inc. 2005

Authors and Affiliations

  • Ken McRae
    • 1
  • George S. Cree
    • 2
  • Mark S. Seidenberg
    • 3
  • Chris Mcnorgan
    • 1
  1. 1.Department of Psychology, Social Science CentreUniversity of Western OntarioLondonCanada
  2. 2.University of TorontoScarboroughCanada
  3. 3.University of WisconsinMadison

Personalised recommendations