Advertisement

Timing and time perception: A review of recent behavioral and neuroscience findings and theoretical directions

Abstract

The aim of the present review article is to guide the reader through portions of the human time perception, or temporal processing, literature. After distinguishing the main contemporary issues related to time perception, the article focuses on the main findings and explanations that are available in the literature on explicit judgments about temporal intervals. The review emphasizes studies that are concerned with the processing of intervals lasting a few milliseconds to several seconds and covers studies issuing from either a behavioral or a neuroscience approach. It also discusses the question of whether there is an internal clock (pacemaker counter or oscillator device) that is dedicated to temporal processing and reports the main hypotheses regarding the involvement of biological structures in time perception.

References

  1. Alexander, I., Cowey, A., & Walsh, V. (2005). The right parietal cortex and time perception: Back to Critchley and the Zeitraffer phenomenon. Cognitive Neuropsychology, 22, 306–315. doi:10.1080/02643290442000356

  2. Allan, L. G., & Church, R. M. (EDS.) (2002). Special issue honoring the career of Professor John Gibbon. Learning & Motivation, 33(1). doi:10.1006/lmot.2001.1114

  3. Allan, L. G., & Gerhardt, K. (2001). Temporal bisection with trial referents. Perception & Psychophysics, 63, 524–540.

  4. Allan, L. G., & Kristofferson, A. B. (1974). Psychophysical theories of duration discrimination. Perception & Psychophysics, 16, 26–34.

  5. Allan, L. G., Kristofferson, A. B., & Wiens, E. W. (1971). Duration discrimination of brief light flashes. Perception & Psychophysics, 9, 327–334.

  6. Angrilli, A., Cherubini, P., Pavese, A., & Mantredini, S. (1997). The influence of affective factors on time perception. Perception & Psychophysics, 59, 972–982.

  7. Arao, H., Suetomi, D., & Nakajima, Y. (2000). Does time-shrinking take place in visual temporal patterns? Perception, 29, 819–830. doi:10.1068/p2853

  8. Barnes, R., & Jones, M. R. (2000). Expectancy, attention, and time. Cognitive Psychology, 41, 254–311. doi:10.1006/cogp.2000.0738

  9. Belin, P., McAdams, S., Thivard, L., Smith, B., Savel, S., Zilbovicius, M., et al. (2002). The neuroanatomical substrate of sound duration discrimination. Neuropsychologia, 40, 1956–1964. doi:10.1016/S0028-3932(02)00062-3

  10. Bendixen, A., Grimm, S., & Schroger, E. (2006). The relation between onset, offset, and duration perception as examined by psychophysical data and event-related brain potentials. Journal of Psychophysiology, 20, 40–51. doi:10.1027/0269-8803.20.1.40

  11. Bindra, D., & Waksberg, H. (1956). Methods and terminology in studies of time estimation. Psychological Bulletin, 53, 155–159. doi:10.1037/h0041810

  12. Bisson, N., Tobin, S., & Grondin, S. (2009). Remembering the duration of joyful and sad musical excerpts. NeuroQuantology, 7, 46–57.

  13. Block, R. A. (1990). Cognitive models of psychological time. Hillsdale, NJ: Erlbaum.

  14. Block, R. A. (2003). Psychological timing without a timer: The roles of attention and memory. In H. Helfrich (Ed.), Time and mind II (pp. 41–60). Göttingen: Hogrefe & Huber.

  15. Block, R. A., & Zakay, D. (1997). Prospective and retrospective duration judgments: A meta-analytic review. Psychonomic Bulletin & Review, 4, 184–197.

  16. Block, R. A., & Zakay, D. (2008). Timing and remembering the past, the present, and the future. In S. Grondin (Ed.), Psychology of time (pp. 367–394). Bingley, U.K.: Emerald Group.

  17. Block, R. A., Zakay, D., & Hancock, P. A. (1999). Developmental changes in human duration judgments: A meta-analytic review. Developmental Review, 19, 183–211. doi:10.1006/drev.1998.0475

  18. Boets, B., Wouters, J., Van Wieringen, A., & Ghesquière, P. (2006). Auditory temporal information processing in preschool children at family risk for dyslexia: Relations with phonological abilities and developing literacy skills. Brain & Language, 97, 64–79. doi:10.1016/j.bandl.2005.07.026

  19. Boltz, M. G. (1992). The remembering of auditory event durations. Journal of Experimental Psychology: Learning, Memory, & Cognition, 18, 938–956. doi:10.1037/0278-7393.18.5.938

  20. Boltz, M. G. (1994). Changes in internal tempo and effects on the learning and remembering of event durations. Journal of Experimental Psychology: Learning, Memory, & Cognition, 20, 1154–1171. doi:10.1037/0278-7393.20.5.1154

  21. Boltz, M. G. (1995). Effects of event structure on retrospective duration judgments. Perception & Psychophysics, 57, 1080–1096.

  22. Boltz, M. G. (2005). Duration judgments of naturalistic events in the auditory and visual modalities. Perception & Psychophysics, 67, 1362–1375.

  23. Braitenberg, V. (1967). Is the cerebellar cortex a biological clock in the millisecond range? Progress in Brain Research, 25, 334–346.

  24. Brown, S. W. (1997). Attentional resources in timing: Interference effects in concurrent temporal and nontemporal working memory tasks. Perception & Psychophysics, 59, 1118–1140.

  25. Brown, S. W. (2006). Timing and executive function: Bidirectional interference between concurrent temporal production and randomization tasks. Memory & Cognition, 34, 1464–1471.

  26. Brown, S. W. (2008). Time and attention: Review of the literature. In S. Grondin (Ed.), Psychology of time (pp. 111–138). Bingley, U.K.: Emerald Group.

  27. Brown, S. W., & Boltz, M. (2002). Attentional processes in time perception: Effects of mental workload and event structure. Journal of Experimental Psychology: Human Perception & Performance, 28, 600–615. doi:10.1037/0096-1523.28.3.600

  28. Brown, S. W., & Merchant, S. M. (2007). Processing resources in timing and sequencing tasks. Perception & Psychophysics, 69, 439–449.

  29. Brown, S. W., & Stubbs, D. A. (1988). The psychophysics of retrospective and prospective timing. Perception, 17, 297–310. doi:10.1068/p170297

  30. Brown, S. W., Stubbs, D. A., & West, A. N. (1992). Attention, multiple timing, and psychophysical scaling of temporal judgments. In F. Macar, V. Pouthas & W. J. Friedman (Eds.), Time, action, and cognition: Towards bridging the gap (pp. 129–140). Dordrecht, The Netherlands: Kluwer.

  31. Brown, S. W., & West, A. N. (1990). Multiple timing and the allocation of attention. Acta Psychologica, 75, 103–121. doi:10.1016/0001-6918(90)90081-P

  32. Buccheri, R., Saniga, M., & Stuckey, M. (EDS.) (2003). The nature of time: Geometry, physics and perception. Dordrecht, The Netherlands: Kluwer.

  33. Bueti, D., Bahrami, B., & Walsh, V. (2008). Sensory and associative cortex in time perception. Journal of Cognitive Neuroscience, 20, 1054–1062. doi:10.1162/jocn.2008.20060

  34. Bueti, D., Walsh, V., Frith, C., & Rees, G. (2008). Different brain circuits underlie motor and perceptual representations of temporal intervals. Journal of Cognitive Neuroscience, 20, 204–214. doi:10.1162/jocn.2008.20017

  35. Buhusi, C. V., & Meck, W. H. (2005). What makes us tick? Functional and neural mechanisms of interval timing. Nature Reviews Neuroscience, 6, 755–765. doi:10.1038/nrn1764

  36. Buhusi, C. V., & Meck, W. H. (2009). Relative time sharing: New findings and an extension of the resource allocation model of temporal processing. Philosophical Transactions of the Royal Society B, 364, 1875–1885.

  37. Buonomano, D. V. (2007). The biology of time across different scales. Nature Chemical Biology, 3, 594–597.

  38. Burle, B., & Casini, L. (2001). Dissociation between activation and attention effects in time estimation: Implications for internal clock models. Journal of Experimental Psychology: Human Perception & Performance, 27, 195–205. doi:10.1037/0096-1523.27.1.195

  39. Burr, D., Tozzi, A., & Morrone, M. C. (2007). Neural mechanisms for timing visual events are spatially selective in real-world coordinates. Nature Neuroscience, 10, 423–425. doi:10.1038/nn1874

  40. Carroll, C. A., O’Donnell, B. F., Shekhar, A., & Hetrick, W. P. (2009). Timing dysfunctions in schizophrenia span from millisecond to several-second durations. Brain & Cognition, 70, 181–190. doi:10.1016/j.bandc.2009.02.001

  41. Caruso, E. M., Gilbert, D. T., & Wilson, T. D. (2008). A wrinkle in time: Asymmetric valuation of past and future events. Psychological Science, 19, 796–801. doi:10.1111/j.1467-9280.2008.02159.x

  42. Casini, L., & Macar, F. (1997). Effects of attention manipulation on judgments of duration and of intensity in the visual modality. Memory & Cognition, 25, 812–818.

  43. Chambon, M., Gil, S., Niedenthal, P. M., & Droit-Volet, S. (2005). Psychologie sociale et perception du temps: l’estimation temporelle des stimuli sociaux et émotionnels [Social psychology and time perception: The temporal estimation of social and emotional stimuli]. Psychologie Française, 50, 167–180. doi:10.1016/j.psfr.2004.10.008

  44. Church, R. M. (1997). Timing and temporal search. In C. M. Bradshaw & E. Szabadi (Eds.), Time and behavior: Psychological and neurobehavioral analyses (pp. 41–78). Amsterdam: Elsevier, North-Holland.

  45. Church, R. M. (2003). A concise introduction to the scalar timing theory. In W. H. Meck (Ed.), Functional and neural mechanisms of interval timing (pp. 3–22). Boca Raton, FL: CRC.

  46. Church, R. M., & Broadbent, H. A. (1990). Alternative representations of time, number, and rate. Cognition, 37, 55–81. doi:10.1016/0010-0277(90)90018-F

  47. Coull, J. T., Vidal, F., Nazarian, B., & Macar, F. (2004). Functional anatomy of the attentional modulation of time estimation. Science, 303, 1506–1508.

  48. Creelman, C. D. (1962). Human discrimination of auditory duration. Journal of the Acoustical Society of America, 34, 582–593. doi:10.1121/1.1918172

  49. Crystal, J. D. (ED.) (2007). The psychology of time: A tribute to the contributions of Russell M. Church [Special Issue]. Behavioural Processes, 74(2).

  50. Damasio, A. R. (2002). Remembering when. Scientific American, 287, 66–73.

  51. Danckert, J., Ferber, S., Pun, C., Broderick, C., Striemer, C., Rock, S., & Stewart, D. (2007). Neglected time: Impaired temporal perception of multisecond intervals in unilateral neglect. Journal of Cognitive Neuroscience, 19, 1706–1720. doi:10.1162/jocn.2007.19.10.1706

  52. Davalos, D. B., Kisley, M. A., & Freedman, R. (2005). Behavioral and electrophysiological indices of temporal processing dysfunction in schizophrenia. Journal of Neuropsychiatry & Clinical Neurosciences, 17, 517–525.

  53. Davalos, D. B., Kisley, M. A., Polk, S. D., & Ross, R. G. (2003). Mismatch negativity in detection of interval duration deviation in schizophrenia. Cognitive Neuroscience & Neuropsychology, 14, 1283–1286. doi:10.1097/00001756-200307010-00019

  54. Davalos, D. B., Kisley, M. A., & Ross, R. G. (2002). Deficits in auditory and visual temporal perception in schizophrenia. Cognitive Neuropsychiatry, 7, 273–282. doi:10.1080/13546800143000230

  55. Davalos, D. B., Kisley, M. A., & Ross, R. G. (2003). Effects of interval duration on temporal processing in schizophrenia. Brain & Cognition, 52, 295–301. doi:10.1016/S0278-2626(03)00157-X

  56. Drake, C., & Botte, M.-C. (1993). Tempo sensitivity in auditory sequences: Evidence for a multiple-look model. Perception & Psychophysics, 54, 277–286.

  57. Droit-Volet, S., Brunot, S., & Niedenthal, P. M. (2004). Perception of the duration of emotional events. Cognition & Emotion, 18, 849–858. doi:10.1080/02699930341000194

  58. Droit-Volet, S., & Gil, S. (2009). Emotion and time perception. Philosophical Transactions of the Royal Society B, 364, 1943–1953.

  59. Droit-Volet, S., & Meck, W. H. (2007). How emotions colour our perception of time. Trends in Cognitive Sciences, 11, 504–513. doi:10.1016/j.tics.2007.09.008

  60. Droit-Volet, S., Meck, W. H., & Penney, T. B. (2007). Sensory modality and time perception in children and adults. Behavioural Processes, 74, 244–250. doi:10.1016/j.beproc.2006.09.012

  61. Droit-Volet, S., Wearden, J. H., & Delgado, M. D. (2007). Shortterm memory for time in children and adults: A behavioral study and a model. Journal of Experimental Child Psychology, 97, 246–264. doi:10.1016/j.jecp.2007.02.003

  62. Eagleman, D. M. (2008). Human time perception and its illusions. Current Opinion in Neurobiology, 18, 131–136. doi:10.1016/j.conb.2008.06.002

  63. Edwards, V. T., Giaschi, D. E., Dougherty, R. F., Edgell, D., Bjornson, B. H., Lyons, C., & Douglas, R. M. (2004). Psychophysical indexes of temporal processing abnormalities in children with developmental dyslexia. Developmental Neuropsychology, 25, 321–354. doi:10.1207/s15326942dn2503_5

  64. Effron, D. A., Niedenthal, P. M., Gil, S., & Droit-Volet, S. (2006). Embodied temporal perception of emotion. Emotion, 6, 1–9. doi:10.1037/1528-3542.6.1.1

  65. Eisler, A. D., Eisler, H., & Montgomery, H. (2004). A quantitative model for retrospective subjective duration. NeuroQuantology, 4, 263–291.

  66. Eisler, H. (1975). Subjective duration and psychophysics. Psychological Review, 82, 429–450. doi:10.1037/0033-295X.82.6.429

  67. Eisler, H. (1976). Experiments on subjective duration 1878–1975: A collection of power function exponents. Psychological Bulletin, 83, 1154–1171. doi:10.1037/0033-2909.83.6.1154

  68. Eisler, H. (2003). The parallel-clock model: A tool for quantification of experienced duration. In R. Buccheri, M. Saniga, & M. Stuckey (Eds.), The nature of time: Geometry, physics and perception (pp. 19–26). Dordrecht, The Netherlands: Kluwer.

  69. Eisler, H., & Eisler, A. D. (1992). Time perception: Effects of sex and sound intensity on scales of subjective duration. Scandinavian Journal of Psychology, 33, 339–358. doi:10.1111/j.1467-9450.1992.tb00923.x

  70. Eisler, H., Eisler, A. D., & Hellström, Å. (2008). Psychophysical issues in the study of time perception. In S. Grondin (Ed.), Psychology of time (pp. 75–110). Bingley, U.K.: Emerald Group.

  71. Elvevåg, B., Brown, G. D. A., McCormack, T., Vousden, J. I., & Goldberg, T. E. (2004). Identification of tone duration, line length, and letter position: An experimental approach to timing and working memory deficits in schizophrenia. Journal of Abnormal Psychology, 113, 509–521. doi:10.1037/0021-843X.113.4.509

  72. Elvevåg, B., McCormack, T., Gilbert, A., Brown, G. D. A., Weinberger, D. R., & Goldberg, T. E. (2003). Duration judgments in patients with schizophrenia. Psychological Medicine, 33, 1249–1261.

  73. Ferrandez, A. M., Hugueville, L., Lehericy, S., Poline, J. B., Marsault, C., & Pouthas, V. (2003). Basal ganglia and supplementary motor area subtend duration perception: An fMRI study. NeuroImage, 19, 1532–1544.

  74. Field, D. T., & Groeger, J. A. (2004). Temporal interval production and short-term memory. Perception & Psychophysics, 66, 808–819.

  75. Ford, M. P., Wagenaar, R. C., & Newell, K. M. (2007). The effects of auditory rhythms and instruction on walking patterns in individuals post stroke. Gait & Posture, 26, 150–155.

  76. Fortin, C., Bédard, M.-C., & Champagne, J. (2005). Timing during interruptions in timing. Journal of Experimental Psychology: Human Perception & Performance, 31, 276–288. doi:10.1037/0096-1523.31.2.276

  77. Fortin, C., Fairhurst, S., Malapani, C., Morin, C., Towey, J., & Meck, W. H. (2009). Expectancy in humans in multisecond peakinterval timing with gaps. Attention, Perception, & Psychophysics, 71, 789–802.

  78. Fraisse, P. (1956). Les structures rythmiques [Rhythmic structures]. Louvain, Belgium: Studia Psychologica.

  79. Fraisse, P. (1957). Psychologie du temps [Psychology of time]. Paris: Presses Universitaires de France.

  80. Fraisse, P. (1978). Time and rhythm perception. In E. Carterette & M. Friedman (Eds.), Handbook of perception: Vol. 8. Perceptual coding (pp. 203–254). New York: Academic Press.

  81. Fraisse, P. (1984). Perception and estimation of time. Annual Review of Psychology, 35, 1–36.

  82. Frassinetti, F., Magnani, B., & Oliveri, M. (2009). Prismatic lenses shift time perception. Psychological Science, 20, 949–954. doi:10.1111/j.1467-9280.2009.02390.x

  83. Friberg, A., & Sundberg, J. (1995). Time discrimination in a monotonic, isochronic sequence. Journal of the Acoustical Society of America, 98, 2524–2531. doi:10.1121/1.413218

  84. Friedman, W. J. (1993). Memory for the time of past events. Psychological Bulletin, 113, 44–66. doi:10.1037/0033-2909.113.1.44

  85. Friedman, W. J. (2008). Developmental perspectives on the psychology of time. In S. Grondin (Ed.), Psychology of time (pp. 345–366). Bingley, U.K.: Emerald Group.

  86. Gamache, P.-L., & Grondin, S. (2008). Temporal limits of memory for time. In B. Schneider, B. M. Ben-David, S. Parker, & W. Wong (Eds.), Fechner Day 2008: Proceedings of the 24th Annual Meeting of the ISP (pp. 173–178). Toronto: The ISP.

  87. Gibbon, J. (1977). Scalar expectancy theory and Weber’s law in animal timing. Psychological Review, 84, 279–325.

  88. Gibbon, J. (1991). Origins of scalar timing. Learning & Motivation, 22, 3–38. doi:10.1016/0023-9690(91)90015-Z

  89. Gibbon, J. (1992). Ubiquity of scalar timing with a Poisson clock. Journal of Mathematical Psychology, 36, 283–293. doi:10.1016/0022-2496(92)90041-5

  90. Gibbon, J., Church, R. M., & Meck, W. H. (1984). Scalar timing in memory. In J. Gibbon & L. Allan (Eds.), Timing and time perception (Annals of the New York Academy of Sciences, Vol. 423, pp. 52–77). New York: New York Academy of Sciences.

  91. Gil, S., Niedenthal, P. M., & Droit-Volet, S. (2007). Anger and time perception in children. Emotion, 7, 219–225. doi:10.1037/1528-3542.7.1.219

  92. Gilden, D. L., & Marusich, L. R. (2009). Contraction of time in attention-deficit hyperactivity disorder. Neuropsychology, 23, 265–269. doi:10.1037/a0014553

  93. Glicksohn, J. (2001). Temporal cognition and the phenomenology of time: A multiplicative function for apparent duration. Consciousness & Cognition, 10, 1–25. doi:10.1006/ccog.2000.0468

  94. Glicksohn, J., & Cohen, Y. (2000). Can music alleviate cognitive dysfunction in schizophrenia? Psychopathology, 33, 43–47. doi:10.1159/000029118

  95. Glicksohn, J., & Myslobodsky, M. S. (EDS.) (2006). Timing the future: The case for a time-based prospective memory. London: World Scientific Publishing.

  96. Goldreich, D. (2007). A Bayesian perceptual model replicates the cutaneous rabbit and other tactile spatiotemporal illusions. PLoS ONE, 2, e333. doi:10.1371/journal.pone.0000333

  97. Goldstone, S., & Lhamon, W. T. (1974). Studies of auditory-visual differences in human time judgment: I. Sounds are judged longer than lights. Perceptual & Motor Skills, 39, 63–82.

  98. Grondin, S. (1993). Duration discrimination of empty and filled intervals marked by auditory and visual signals. Perception & Psychophysics, 54, 383–394.

  99. Grondin, S. (2001a). Discriminating time intervals presented in sequences marked by visual signals. Perception & Psychophysics, 63, 1214–1228.

  100. Grondin, S. (2001b). From physical time to the first and second moments of psychological time. Psychological Bulletin, 127, 22–44. doi:10.1037/0033-2909.127.1.22

  101. Grondin, S. (2001c). A temporal account of the limited processing capacity. Behavioral & Brain Sciences, 24, 122–123.

  102. Grondin, S. (2003). Sensory modalities and temporal processing. In H. Helfrich (Ed.), Time and mind II (pp. 61–77). Göttingen: Hogrefe & Huber.

  103. Grondin, S. (2005). Overloading temporal memory. Journal of Experimental Psychology: Human Perception & Performance, 31, 869–879. doi:10.1037/0096-1523.31.5.869

  104. Grondin, S. (2008a). Methods for studying psychological time. In S. Grondin (Ed.), Psychology of time (pp. 51–74). Bingley, U.K.: Emerald Group.

  105. Grondin, S. (ED.) (2008b). Psychology of time. Bingley, U.K.: Emerald Group.

  106. Grondin, S., Bisson, N., Gagnon, C., Gamache, P.-L., & Matteau, A.-A. (2009). Little to be expected from auditory training for improving visual temporal discrimination. NeuroQuantology, 7, 95–102.

  107. Grondin, S., Dionne, G., Malenfant, N., Plourde, M., Cloutier, M.-E., & Jean, C. (2007). Temporal processing skills of children with and without specific language impairment. Canadian Journal of Speech-Language Pathology & Audiology, 31, 38–46.

  108. Grondin, S., Gamache, P.-L., Tobin, S., Bisson, N., & Hawke, L. (2008). Categorization of brief temporal intervals: An auditory processing context may impair visual performances. Acoustical Science & Technology, 29, 338–340.

  109. Grondin, S., & Killeen, P. R. (2009). Tracking time with song and count: Different Weber functions for musicians and nonmusicians. Attention, Perception, & Psychophysics, 71, 1649–1654.

  110. Grondin, S., & Macar, F. (1992). Dividing attention between temporal and nontemporal tasks: A performance operating characteristic— POC—analysis. New York: Kluwer Academic/Plenum.

  111. Grondin, S., & McAuley, J. D. (2009). Duration discrimination in crossmodal sequences. Perception, 38, 1542–1559.

  112. Grondin, S., Meilleur-Wells, G., & Lachance, R. (1999). When to start explicit counting in a time-intervals discrimination task: Acritical point in the timing process of humans. Journal of Experimental Psychology: Human Perception & Performance, 25, 993–1004. doi:10.1037/0096-1523.25.4.993

  113. Grondin, S., Ouellet, B., & Roussel, M.-E. (2004). Benefits and limits of explicit counting for discriminating temporal intervals. Canadian Journal of Experimental Psychology, 58, 1–12. doi:10.1037/h0087436

  114. Grondin, S., & Plourde, M. (2007a). Discrimination of time intervals presented in sequences: Spatial effects with multiple auditory sources. Human Movement Science, 26, 702–716. doi:10.1016/j.humov.2007.07.009

  115. Grondin, S., & Plourde, M. (2007b). Judging multi-minute intervals retrospectively. Quarterly Journal of Experimental Psychology, 60, 1303–1312. doi:10.1080/17470210600988976

  116. Grondin, S., Pouthas, V., Samson, S., & Roy, M. (2006). Mécanismes et désordres liés à l’adaptation au temps [Mechanisms and disorders related to the adaptation to time]. Canadian Psychology, 47, 170–183. doi:10.1037/cp2006007

  117. Grondin, S., & Rammsayer, T. (2003). Variable foreperiods and temporal discrimination. Quarterly Journal of Experimental Psychology, 56A, 731–765. doi:10.1080/02724980244000611

  118. Grondin, S., & Rousseau, R. (1991). Judging the relative duration of multimodal short empty time intervals. Perception & Psychophysics, 49, 245–256.

  119. Grondin, S., Roussel, M.-E., Gamache, P.-L., Roy, M., & Ouellet, B. (2005). The structure of sensory events and the accuracy of time judgments. Perception, 34, 45–58. doi:10.1068/p5369

  120. Guillot, A., & Collet, C. (2005). Duration of mentally simulated movement: A review. Journal of Motor Behavior, 37, 10–20. doi:10.3200/JMBR.37.1.10-20

  121. Handy, T. C., Gazzaniga, M. S., & Ivry, R. B. (2003). Cortical and subcortical contributions to the representation of temporal information. Neuropsychologia, 41, 1461–1473. doi:10.1016/S0028-3932(03)00093-9

  122. Harrington, D. L., & Haaland, K. Y. (1999). Neural underpinnings of temporal processing: A review of focal lesion, pharmacological, and functional imaging research. Reviews in the Neurosciences, 10, 91–116.

  123. Harrington, D. L., Lee, R. R., Boyd, L. A., Rapcsak, S. Z., & Knight, R. T. (2004). Does the representation of time depend on the cerebellum? Effect of cerebellar stroke. Brain, 127, 1–14. doi:10.1093/brain/awh065

  124. Hecht, H., & Savelsbergh, G. (Eds.) (2004). Time-to-contact (Advances in Psychology, Vol. 135). Amsterdam: Elsevier, North-Holland.

  125. Helfrich, H. (ED.) (2003). Time and mind II: Information processing perspectives. Seattle: Hogrefe & Huber.

  126. Hellström, Å. (1985). The time-order error and its relatives: Mirrors of cognitive processes in comparing. Psychological Bulletin, 97, 35–61. doi:10.1037/0033-2909.97.1.35

  127. Hellström, Å., & Rammsayer, T. H. (2004). Effects of time-order, interstimulus interval, and feedback in duration discrimination of noise bursts in the 50- and 1000-ms ranges. Acta Psychologica, 116, 1–20. doi:10.1016/j.actpsy.2003.11.003

  128. Helson, H. (1964). Adaptation-level theory. New York: Harper & Row.

  129. Hemmes, N. S., Brown, B. L., & Kladopoulos, C. N. (2004). Time perception with and without a concurrent nontemporal task. Perception & Psychophysics, 66, 328–341.

  130. Henry, M. J., & McAuley, J. D. (2009). Evaluation of an imputed pitch velocity model of the auditory kappa effect. Journal of Experimental Psychology: Human Perception & Performance, 35, 551–564. doi:10.1037/0096-1523.35.2.551

  131. Henry, M. J., McAuley, J. D., & Zaleha, M. (2009). Perceived pitch depends on perceived time: Further test of an auditory motion hypothesis. Attention, Perception, & Psychophysics, 71, 1399–1413.

  132. Hicks, R. E., Miller, G. W., & Kinsbourne, M. (1976). Prospective and retrospective judgments of time as a function of amount of information processed. American Journal of Psychology, 89, 719–730. doi:10.2307/1421469

  133. Hinton, S. C., Harrington, D. L., Binder, J. R., Durgerian, S., & Rao, S. M. (2004). Neural systems supporting timing and chronometric counting: An FMRI study. Cognitive Brain Research, 21, 183–192. doi:10.1016/j.cogbrainres.2004.04.009

  134. Hinton, S. C., & Meck, W. H. (2004). Frontal-striatal circuitry activated by human peak-interval timing in the supra-seconds range. Cognitive Brain Research, 21, 171–182. doi:10.1016/j.cogbrainres.2004.08.005

  135. Hinton, S. C., & Rao, S. M. (2004). “One-thousand one. . . onethousand two . . .”: Chronometric counting violates the scalar property in interval timing. Psychonomic Bulletin & Review, 11, 24–30.

  136. Hirsh, I. J., Monahan, C. B., Grant, K. W., & Singh, P. G. (1990). Studies in auditory timing: 1. Simple patterns. Perception & Psychophysics, 47, 215–226.

  137. Hirsh, I. J., & Sherrick, C. E. (1961). Perceived order in different sense modalities. Journal of Experimental Psychology, 62, 423–432. doi:10.1037/h0045283

  138. Hodinott-Hill, I., Thilo, K. V., Cowey, A., & Walsh, V. (2002). Auditory chronostasis: Hanging on the telephone. Current Biology, 12, 1779–1781. doi:10.1016/S0960-9822(02)01219-8

  139. Hopson, J. W. (2003). General learning models: Timing without a clock. In W. H. Meck (Ed.), Functional and neural mechanisms of interval timing (pp. 23–60). Boca Raton, FL: CRC.

  140. Hornik, J. (1992). Time estimation and orientation mediated by transient mood. Journal of Socio-Economics, 21, 209–227. doi:10.1016/1053-5357(92)90010-5

  141. Ivry, R. B., & Hazeltine, R. E. (1995). The perception and production of temporal intervals across a range of durations: Evidence for a common timing mechanism. Journal of Experimental Psychology: Human Perception & Performance, 21, 3–18. doi:10.1037/0096-1523.21.1.3

  142. Ivry, R. B., & Keele, S. W. (1989). Timing functions of the cerebellum. Journal of Cognitive Neuroscience, 1, 136–152. doi:10.1162/jocn.1989.1.2.136

  143. Ivry, R. B., Keele, S. W., & Diener, H. C. (1988). Dissociation of the lateral and medial cerebellum in movement timing and movement execution. Experimental Brain Research, 73, 167–180.

  144. Ivry, R. B., & Richardson, T. C. (2002). Temporal control and coordination: The multiple timer model. Brain & Cognition, 48, 117–132. doi:10.1006/brcg.2001.1308

  145. Ivry, R. B., & Schlerf, J. (2008). Dedicated and intrinsic models of time perception. Trends in Cognitive Sciences, 12, 273–280. doi:10.1016/j.tics.2008.04.002

  146. Jahanshahi, M., Jones, C. R. G., Dirnberger, G., & Frith, C. D. (2006). The substantia nigra pars compacta and temporal processing. Journal of Neuroscience, 26, 12266–12273. doi:10.1523/JNEUROSCI.2540-06.2006

  147. James, W. (1890). The principles of psychology. New York: Holt.

  148. Jantzen, K. J., Steinberg, F. L., & Kelso, J. A. S. (2005). Functional MRI reveals the existence of modality and coordination-dependent timing networks. NeuroImage, 25, 1031–1042.

  149. Johnston, A., Arnold, D. H., & Nishida, S. (2006). Spatially localized distortions of event time. Current Biology, 16, 472–479.

  150. Jones, B., & Huang, Y. L. (1982). Space-time dependencies in psychophysical judgment of extent and duration: Algebraic models of the tau and kappa effects. Psychological Bulletin, 91, 128–142. doi:10.1037/0033-2909.91.1.128

  151. Jones, L. A., & Wearden, J. H. (2003). More is not necessarily better: Examining the nature of the temporal reference memory component in timing. Quarterly Journal of Experimental Psychology, 56B, 321–343. doi:10.1080/02724990244000287

  152. Jones, L. A., & Wearden, J. H. (2004). Double standards: Memory loading in temporal reference memory. Quarterly Journal of Experimental Psychology, 57B, 55–77. doi:10.1080/02724990344000088

  153. Jones, M. R. (1976). Time, our lost dimension: Toward a new theory of perception, attention, and memory. Psychological Review, 83, 323–355. doi:10.1037/0033-295X.83.5.323

  154. Jones, M. R., & Boltz, M. (1989). Dynamic attending and responses to time. Psychological Review, 96, 459–491. doi:10.1037/0033-295X.96.3.459

  155. Jones, M. R., Johnston, H. M., & Puente, J. (2006). Effects of auditory pattern structure on anticipatory and reactive attending. Cognitive Psychology, 53, 59–96. doi:10.1016/j.cogpsych.2006.01.003

  156. Jones, M. R., & McAuley, J. D. (2005). Time judgments in global temporal contexts. Perception & Psychophysics, 67, 398–417.

  157. Jueptner, M., Rijntjes, M., Weiller, C., Faiss, J. H., Timmann, D., Mueller, S. P., & Diener, H. C. (1995). Localization of a cerebellar timing process using PET. Neurology, 45, 1540–1545.

  158. Kanai, R., & Watanabe, M. (2006). Visual onset expands subjective time. Perception & Psychophysics, 68, 1113–1123.

  159. Karmarkar, U. R., & Buonomano, D. V. (2007). Timing in the absence of clocks: Encoding time in neural network states. Neuron, 53, 427–438.

  160. Keele, S. W., & Ivry, R. B. (1991). Does the cerebellum provide a common computation for diverse tasks? A timing hypothesis. In A. Diamond (Ed.), The developmental and neural bases of higher cognitive functions (Annals of the New York Academy Sciences, Vol. 608, pp. 179–211). New York: New York Academy of Sciences.

  161. Keele, S. W., Pokorny, R. A., Corcos, D. M., & Ivry, R. (1985). Do perception and motor production share common timing mech-anisms: A correlational analysis. Acta Psychologica, 60, 173–191. doi:10.1016/0001-6918(85)90054-X

  162. Kellaris, J. J., & Kent, R. J. (1992). The influence of music on consumers’ temporal perceptions: Does time fly when you’re having fun? Journal of Consumer Psychology, 1, 365–376. doi:10.1016/S1057-7408(08)80060-5

  163. Killeen, P. R., & Fetterman, J. G. (1988). A behavioral theory of timing. Psychological Review, 95, 274–295. doi:10.1037/0033-295X.95.2.274

  164. Killeen, P. R., Fetterman, J. G., & Bizo, L. A. (1997). Time’s cause. In C. M. Bradshaw & E. Szabadi (Eds.), Time and behavior: Psychological and neurobehavioral analyses (pp. 79–131). Amsterdam: Elsevier, North-Holland.

  165. Killeen, P. R., & Taylor, T. J. (2000). How the propagation of error through stochastic counters affects time discrimination and other psychophysical judgments. Psychological Review, 107, 430–459.

  166. Killeen, P. R., & Weiss, N. A. (1987). Optimal timing and the Weber function. Psychological Review, 94, 455–468. doi:10.1037/0033-295X.107.3.430

  167. Klapproth, F. (2009). Single-modality memory mixing in temporal generalization: An effect due to instructional ambiguity. Neuro-Quantology, 7, 85–94.

  168. Koch, G., Oliveri, M., Carlesimo, G. A., & Caltagirone, C. (2002). Selective deficit of time perception in a patient with right prefrontal cortex lesion. Neurology, 59, 1658–1659.

  169. Koch, G., Oliveri, M., Torriero, S., & Caltagirone, C. (2003). Underestimation of time perception after repetitive transcranial magnetic stimulation. Neurology, 60, 1844–1846.

  170. Koch, G., Oliveri, M., Torriero, S., Salerno, S., Lo Gerfo, E. & Caltagirone, C. (2007). Repetitive TMS of cerebellum interferes with millisecond time processing. Experimental Brain Research, 179, 291–299.

  171. Kudo, K., Miyazaki, M., Kimura, T., Yamanaka, K., Kadota, H., Hirashima, M., et al. (2004). Selective activation and deactivation of the human brain structures between speeded and precisely timed tapping responses to identical visual stimulus: An fMRI study. Neuro-Image, 22, 1291–1301.

  172. Labelle, M.-A., Graf, P., Grondin, S., & Gagné-Roy, L. (2009). Time-related processes in time-based prospective memory and in time-interval production. European Journal of Cognitive Psychology, 21, 501–521. doi:10.1080/09541440802031000

  173. Lapid, E., Ulrich, R., & Rammsayer, T. (2008). On estimating the difference limen in duration discrimination tasks: A comparison of the 2AFC and the reminder tasks. Perception & Psychophysics, 70, 291–305. doi:10.3758/PP.70.2.291

  174. Lapid, E., Ulrich, R., & Rammsayer, T. (2009). Perceptual learning in auditory temporal discrimination: No evidence for a cross-modal transfer to the visual modality. Psychonomic Bulletin & Review, 16, 382–389.

  175. Large, E. W. (2008). Resonating to musical rhythm: Theory and experiment. In S. Grondin (Ed.), Psychology of time (pp. 189–232). Bingley, U.K.: Emerald Group.

  176. Large, E. W., & Jones, M. R. (1999). The dynamics of attending: How we track time varying events. Psychological Review, 106, 119–159.

  177. Lavoie, P., & Grondin, S. (2004). Information processing limitations as revealed by temporal discrimination. Brain & Cognition, 54, 198–200. doi:10.1016/j.bandc.2004.02.039

  178. Lee, K. H., Bhaker, R. S., Mysore, A., Parks, R. W., Birkett, P. B., & Woodruff, P. W. (2009). Time perception and its neuropsychological correlates in patients with schizophrenia and in healthy volunteers. Psychiatry Research, 166, 174–183.

  179. Lee, K. H., Eagleston, P. N., Brown, W. H., Gregory, A.N., Barker, A. T., & Woodruff, P. W. R. (2007). The role of the cerebellum in subsecond time perception: Evidence from repetitive transcranial magnetic stimulation. Journal of Cognitive Neuroscience, 19, 147–157. doi:10.1162/jocn.2007.19.1.147

  180. Lejeune, H., & Wearden, J. H. (2009). Vierordt’s The experimental study of the time sense (1868) and its legacy. European Journal of Cognitive Psychology, 21, 941–960.

  181. Lewis, P. A., & Miall, R. C. (2003a). Brain activation patterns during measurement of sub- and supra-second intervals. Neuropsychologia, 41, 1583–1592. doi:10.1016/S0028-3932(03)00118-0

  182. Lewis, P. A., & Miall, R. C. (2003b). Distinct systems for automatic and cognitively controlled time measurement: Evidence from neuroimaging. Current Opinion in Neurobiology, 13, 250–255. doi:10.1016/S0959-4388(03)00036-9

  183. Lewis, P. A., & Miall, R. C. (2006). A right hemispheric prefrontal system for cognitive time measurement. Behavioural Processes, 71, 226–234. doi:10.1016/j.beproc.2005.12.009

  184. Lewis, P. A., & Miall, R. C. (2009). The precision of temporal judgement: Milliseconds, many minutes, and beyond. Philosophical Transactions of the Royal Society B, 364, 1897–1905.

  185. Lhamon, W. T., & Goldstone, S. (1974). Studies on auditory-visual differences in human time judgment: II. More transmitted information with sounds than lights. Perceptual & Motor Skills, 39, 295–307.

  186. Livesey, A. C., Wall, M. B., & Smith, A. T. (2007). Time perception: Manipulation of task difficulty dissociates clock functions from other cognitive demands. Neuropsychologia, 45, 321–331. doi:10.1016/j.neuropsychologia.2006.06.033

  187. Lobo, F. S. N. (2008). Nature of time and causality in physics. In S. Grondin (Ed.), Psychology of time (pp. 395–422). Bingley, U.K.: Emerald Group.

  188. Macar, F., Anton, J.-L., Bonnet, M., & Vidal, F. (2004). Timing functions of the supplementary motor area: An event-related fMRI study. Cognitive Brain Research, 21, 206–215. doi:10.1016/j.cogbrainres.2004.01.005

  189. Macar, F., Coull, J., & Vidal, F. (2006). The supplementary motor area in motor and perceptual time processing: fMRI studies. Cognitive Processing, 7, 89–94. doi:10.1007/s10339-005-0025-7

  190. Macar, F., Grondin, S., & Casini, L. (1994). Controlled attention sharing influences time estimation. Memory & Cognition, 22, 673–686.

  191. Macar, F., Lejeune, H., Bonnet, M., Ferrara, A., Pouthas, V., Vidal, F., & Maquet, P. (2002). Activation of the supplementary motor area and of attentional networks during temporal processing. Experimental Brain Research, 142, 475–485.

  192. Macar, F., & Vidal, F. (2004). Event-related potentials as indices of time processing: A review. Journal of Psychophysiology, 18, 89–104. doi:10.1027/0269-8803.18.23.89

  193. Macar, F., & Vidal, F. (2009). Timing processes: An outline of behavioural and neural indices not systematically considered in timing models. Canadian Journal of Experimental Psychology, 63, 227–239. doi:10.1037/a0014457

  194. Macar, F., Vidal, F., & Casini, L. (1999). The supplementary motor area in motor and sensory timing: Evidence from slow brain potential changes. Experimental Brain Research, 135, 271–280.

  195. Macmillan, N. A., & Creelman, C. D. (1991). Detection theory: A user’s guide. New York: Cambridge University Press.

  196. Madison, G. (2001). Variability in isochronous tapping: Higher order dependencies as a function of intertap interval. Journal of Experimental Psychology: Human Perception & Performance, 27, 411–422. doi:10.1037/0096-1523.27.2.411

  197. Marzi, C. A. (2004). Two brains, one clock. Trends in Cognitive Sciences, 8, 1–3. doi:10.1016/j.tics.2003.10.015

  198. Matell, M. S., & Meck, W. H. (2004). Cortico-striatal circuits and interval timing: Coincidence detection of oscillatory processes. Cognitive Brain Research, 21, 139–170. doi:10.1016/j.cogbrainres.2004.06.012

  199. Matell, M. S., Meck, W. H., & Nicolelis, M. A. L. (2003). Integration of behavior and timing: Anatomically separate system or distributed processing? In W. H. Meck (Ed.), Functional and neural mechanisms of interval timing (pp. 485–514). Boca Raton, FL: CRC.

  200. Mauk, M. D., & Buonomano, D. V. (2004). The neural basis of temporal processing. Annual Review of Neuroscience, 27, 307–340. doi:10.1146/annurev.neuro.27.070203.144247

  201. McAuley, J. D., & Jones, M. R. (2003). Modeling effects of rhythmic context on perceived duration: A comparison of interval and entrainment approaches to short-interval timing. Journal of Experimental Psychology: Human Perception & Performance, 29, 1102–1125. doi:10.1037/0096-1523.29.6.1102

  202. McAuley, J. D., Jones, M. R., Holub, S., Johnston, H. M., & Miller, N. S. (2006). The time of our lives: Life span development of timing and event tracking. Journal of Experimental Psychology: General, 135, 348–367. doi:10.1037/0096-3445.135.3.348

  203. McAuley, J. D., & Miller, N. S. (2007). Picking up the pace: Effects of global temporal context on sensitivity to the tempo of auditory sequences. Perception & Psychophysics, 69, 709–718.

  204. McCormack, T., Wearden, J., Smith, M., & Brown, G. (2005). Epi sodic temporal generalization: A developmental study. Quarterly Journal of Experimental Psychology, 58A, 693–704. doi:10.1080/02724980443000250

  205. Meck, W. H. (1984). Attentional bias between modalities: Effect on the internal clock, memory, and decision stages used in animal time discrimination. In J. Gibbon & L. G. Allan (Eds.), Timing and time perception (Annals of the New York Academy of Sciences, Vol. 423, pp. 528–541). New York: New York Academy of Sciences.

  206. Meck, W. H. (ED.) (2003). Functional and neural mechanisms of internal timing. Boca Raton, FL: CRC.

  207. Meck, W. H. (ED.) (2004). Neuroimaging of interval timing [Special issue]. Cognitive Brain Research, 21(2). doi:10.1016/j.cogbrainres.2004.07.010

  208. Meck, W. H. (ED.) (2005). Neuropsychology of timing and time perception [Special issue]. Brain & Cognition, 58(1). doi:10.1016/j.bandc.2004.09.004

  209. Meck, W. H., & Benson, A. M. (2002). Dissecting the brain’s internal clock: How frontal-striatal circuitry keeps time and shifts attention. Brain & Cognition, 48, 195–211. doi:10.1006/brcg.2001.1313

  210. Miller, N., & McAuley, J. D. (2005). Tempo sensitivity in isochronous tone sequences: The multiple-look model revisited. Perception & Psychophysics, 67, 1150–1160.

  211. Mitsudo, T., Nakajima, Y., Remijn, G. B., Takeichi, H., Goto, Y., & Tobimatsu, S. (2009). Electrophysiological evidence of auditory temporal perception related to the assimilation between two neighboring time intervals. NeuroQuantology, 7, 114–127.

  212. Monfort, V., & Pouthas, V. (2003). Effects of working memory demands on frontal slow waves in time-interval reproduction tasks in humans. Neuroscience Letters, 343, 195–199.

  213. Morrone, M. C., Ross, J., & Burr, D. (2005). Saccadic eye movements cause compression of time as well as space. Nature Neuroscience, 8, 950–954. doi:10.1038/nn1488

  214. Nakajima, Y., ten Hoopen, G., Sasaki, T., Yamamoto, K., Kado ta, M., Simons, M., & Suetomi, D. (2004). Time-shrinking: The process of unilateral temporal assimilation. Perception, 33, 1061–1079. doi:10.1068/p5061

  215. N’Diaye, K., Ragot, R., Garnero, L., & Pouthas, V. (2004). What is common to brain activity evoked by the perception of visual and auditory filled durations? A study with MEG and EEG corecordings. Cognitive Brain Research, 21, 250–268. doi:10.1016/j.cogbrainres.2004.04.006

  216. Nenadic, I., Gaser, C., Volz, H. P., Rammsayer, T., Hager, F., & Sauer, H. (2003). Processing of temporal information and the basal ganglia: New evidence from fMRI. Experimental Brain Research, 148, 238–246.

  217. Nichelli, P., Always, D., & Grafman, J. (1996). Perceptual timing in cerebellar degeneration. Neuropsychologia, 34, 863–871. doi:10.1016/0028-3932(96)00001-2

  218. Ogden, R. S., Wearden, J. H., & Jones, L. A. (2008). Double standards: Memory loading in temporal reference memory. Journal of Experimental Psychology: Human Perception & Performance, 34, 1524–1544. doi:10.1080/02724990344000088

  219. Ono, F., & Kitazawa, S. (2010). Shortening of subjective tone intervals followed by repetitive tone stimuli. Attention, Perception, & Psychophysics, 72, 492–500.

  220. Ornstein, R. (1969). On the experience of time. New York: Penguin.

  221. Pariyadath, V., & Eagleman, D. (2007). The effect of predictability on subjective duration. PLoS ONE, 11, e1264. doi:10.1371/journal.pone.0001264

  222. Penney, T. B., Gibbon, J., & Meck, W. H. (2000). Differential effects of auditory and visual signals on clock speed and temporal memory. Journal of Experimental Psychology: Human Perception & Performance, 26, 1770–1787. doi:10.1037/0096-1523.26.6.1770

  223. Penney, T. B., Gibbon, J., & Meck, W. H. (2008). Categorical scaling of duration bisection in pigeons (Columba livia), mice (Mus musculus), and humans (Homo sapiens). Psychological Science, 19, 1103–1109. doi:10.1111/j.1467-9280.2008.02210.x

  224. Penney, T. B., & Vaitilingam, L. (2008). Imaging time. In S. Grondin (Ed.), Psychology of time (pp. 261–294). Bingley, U.K.: Emerald Group.

  225. Perret-Clermont, A.-N. (ED.) (2005). Thinking time. Göttingen: Hogrefe & Huber.

  226. Pfeuty, M., Ragot, R., & Pouthas, V. (2003a). Processes involved in tempo perception: A CNV analysis. Psychophysiology, 40, 69–76. doi:10.1111/1469-8986.00008

  227. Pfeuty, M., Ragot, R., & Pouthas, V. (2003b). When time is up: CNV time course differentiates the roles of the hemispheres in the discrimination of short tone durations. Experimental Brain Research, 151, 372–379.

  228. Pfeuty, M., Ragot, R., & Pouthas, V. (2008). Brain activity during interval timing depends on sensory structure. Brain Research, 1024, 112–117. doi:10.1016/j.brainres.2008.01.022

  229. Phillips, D. P., & Hall, S. E. (2002). Auditory temporal gap detection for noise markers with partially overlapping and non-overlapping spectra. Hearing Research, 174, 133–141.

  230. Pöppel, E. (1997). A hierarchical model of temporal perception. Trends in Cognitive Sciences, 1, 56–61. doi:10.1016/S1364-6613(97)01008-5

  231. Pöppel, E. (2004). Lost in time: A historical frame, elementary processing units and the 3-second window. Acta Neurobiologiae Experimentalis, 64, 295–301.

  232. Pouthas, V., Garnero, L., Ferrandez, A.-M., & Renault, B. (2000). ERPs and PET analysis of time perception: Spatial and temporal brain mapping during visual discrimination tasks. Human Brain Mapping, 10, 49–60. doi:10.1002/(SICI)1097-0193(200006)10:2<49::AID-HBM10>3.0.CO;2-8

  233. Pouthas, V., George, N., Poline, J.-B., Pfeuty, M., VandeMoorteele, P.-F., Hugueville, L., et al. (2005). Neural network involved in time perception: An fMRI study comparing long and short interval estimation. Human Brain Mapping, 25, 433–441. doi:10.1002/hbm.20126

  234. Predebon, J. (1996). The effects of active and passive processing of interval events on prospective and retrospective time estimates. Acta Psychologica, 94, 41–58. doi:10.1016/0001-6918(95)00044-5

  235. Quené, H. (2007). On the just noticeable difference for tempo in speech. Journal of Phonetics, 35, 353–362. doi:10.1016/j.wocn.2006.09.001

  236. Rammsayer, T. H. (2008). Neuropharmacological approaches to human timing. In S. Grondin (Ed.), Psychology of time (pp. 295–320). Bingley, U.K.: Emerald Group.

  237. Rammsayer, T. H., & Lima, S. D. (1991). Duration discrimination of filled and empty auditory intervals: Cognitive and perceptual factors. Perception & Psychophysics, 50, 565–574.

  238. Rammsayer, T. [H.], & Ulrich, R. (2001). Counting models of temporal discrimination. Psychonomic Bulletin & Review, 8, 270–277.

  239. Rammsayer, T. [H.], & Ulrich, R. (2005). No evidence for qualitative difference in the processing of short and long temporal intervals. Acta Psychologica, 120, 141–171.

  240. Rao, S. M., Mayer, A. R., & Harrington, D. L. (2001). The evolution of brain activation during temporal processing. Nature Neuroscience, 4, 317–323. doi:10.1038/85191

  241. Rattat, A.-C., & Droit-Volet, S. (2005). The long-term retention of time: A developmental study. Quarterly Journal of Experimental Psychology, 58B, 163–176.

  242. Rattat, A.-C., & Droit-Volet, S. (2007). Implicit long-term memory for duration in young children. European Journal of Cognitive Psychology, 19, 271–285. doi:10.1080/09541440600834647

  243. Rau, P.-L. P., Shu-Yun, P., & Chin-Chow, Y. (2006). Time distortion for expert and novice online game players. CyberPsychology & Behavior, 9, 396–403. doi:10.1089/cpb.2006.9.396

  244. Repp, B. H. (2005). Sensorimotor synchronization: A review of the tapping literature. Psychonomic Bulletin & Review, 12, 969–992.

  245. Roberts, W. A. (2008). Can animals cognitively travel to the past and future? In S. Grondin (Ed.), Psychology of time (pp. 322–344). Bingley, U.K.: Emerald Group.

  246. Robertson, S., Zelaznik, H., Lantero, D., Gadacz, K., Spencer, R., Doffin, J., & Schneidt, T. (1999). Correlations for timing consistency among tapping and drawing tasks: Evidence against a single timing process for motor control. Journal of Experimental Psychology: Human Perception & Performance, 25, 1316–1330. doi:10.1037/0096-1523.25.5.1316

  247. Roeckelein, J. E. (2000). The concept of time in psychology: A resource book and annotated bibliography. Westport, CT: Greenwood.

  248. Roeckelein, J. E. (2008). History of conceptions and accounts of time and early time perception research. In S. Grondin (Ed.), Psychology of time (pp. 1–50). Bingley, U.K.: Emerald Group.

  249. Rosenbaum, D. A. (2002). Time, space, and short-term memory. Brain & Cognition, 48, 52–65. doi:10.1006/brcg.2001.1303

  250. Roussel, M.-E., Grondin, S., & Killeen, P. (2009). Spatial effects on temporal categorization. Perception, 38, 748–762.

  251. Roy, M. M., & Christenfeld, N. J. S. (2008). Effect of task length on remembered and predicted duration. Psychonomic Bulletin & Review, 15, 202–207. doi:10.3758/PBR.15.1.202

  252. Roy, M. M., Christenfeld, N. J. S., & McKenzie, C. R. M. (2005). Underestimation of future duration: Memory incorrectly used or memory bias? Psychological Bulletin, 131, 738–756. doi:10.1037/0033-2909.131.5.738

  253. Rubia, K. (2006). The neural corrolates of timing functions. In J. Glicksohn & M. S. Myslobodsky (Eds.), Timing the future: The case for a time-based prospective memory (pp. 213–238). River Edge, NJ: World Scientific Publishing.

  254. Sarrazin, J.-C., Giraudo, M.-D., Pailhous, J., & Bootsma, R. J. (2004). Dynamics of balancing space and time in memory: Tau and kappa effects revisited. Journal of Experimental Psychology: Human Perception & Performance, 30, 411–430. doi:10.1037/0096-1523.30.3.411

  255. Sarrazin, J.-C., Giraudo, M.-D., & Pittenger, J. B. (2007). Tau and kappa effects in physical space: The case of audition. Psychological Research, 71, 201–218. doi:10.1007/s00426-005-0019-1

  256. Schöner, G. (2002). Timing, clocks, and dynamical systems. Brain & Cognition, 48, 31–51. doi:10.1006/brcg.2001.1302

  257. Smith, A., Taylor, E., Lidzba, K., & Rubia, K. (2003). A right hemispheric frontocerebellar network for time discrimination of several hundreds of milliseconds. NeuroImage, 20, 344–350.

  258. Smith, J. G., Harper, D. N., Gittings, D., & Abernethy, D. (2007). The effect of Parkinson’s disease on time estimation as a function of stimulus duration range and modality. Brain & Cognition, 64, 130–143. doi:10.1016/j.bandc.2007.01.005

  259. Spencer, R. M. C., & Zelaznik, H. N. (2003). Weber (slope) analyses of timing variability in tapping and drawing tasks. Journal of Motor Behavior, 35, 371–382.

  260. Spencer, R. M. C., Zelaznik, H. N., Diedrichsen, J., & Ivry, R. B. (2003). Disrupted timing of discontinuous but not continuous movements by cerebellar lesions. Science, 300, 1437–1439.

  261. Staddon, J. E. R., & Higa, J. J. (1996). Multiple time scales in simple habituation. Psychological Review, 103, 720–733. doi:10.1037/0033-295X.103.4.720

  262. Staddon, J. E. R., & Higa, J. J. (1999). Time and memory: Towards a pacemaker-free theory of interval timing. Journal of the Experimental Analysis of Behavior, 71, 215–251. doi:10.1901/jeab.1999.71-215

  263. Strathman, A., & Joireman, J. (Eds.) (2005). Understanding behavior in the context of time. Mahwah, NJ: Erlbaum.

  264. Szelag, E., & Wittmann, M. (EDS.) (2004). Time, cognition, thinking [Special issue]. Acta Neurobiologiae Experimentalis, 64(3).

  265. Tallal, P. (2003). Language learning disabilities: Integrating research approaches. Current Directions in Psychological Science, 12, 206–211. doi:10.1046/j.0963-7214.2003.01263.x

  266. Tallal, P. (2004). Improving language and literacy is a matter of time. Nature Reviews Neuroscience, 5, 721–728. doi:10.1038/nrn1499

  267. Tarlaci, S. (ED.) (2009). Time, timing, and the brain [Special issue]. NeuroQuantology, 7.

  268. ten Hoopen, G., Miyauchi, R., & Nakajima, Y. (2008). Time-based illusions in the auditory mode. In S. Grondin (Ed.), Psychology of time (pp. 139–188). Bingley, U.K.: Emerald Group.

  269. Thaut, M. H. (2005). Rhythm, music and the brain: Scientific foundations and clinical applications. New York: Taylor & Francis.

  270. Thomas, K. E., Handley, S. J., & Newstead, S. E. (2007). The role of prior task experience in temporal misestimating. Quarterly Journal of Experimental Psychology, 60, 230–240.

  271. Tobin, S., Bisson, N., & Grondin, S. (2010). An ecological approach to prospective and retrospective timing of long durations: A study involving gamers. PLoS ONE, 5(2), e9271. doi:10.1371/journal.pone.0009271

  272. Tobin, S., & Grondin, S. (2009). Video games and the perception of very long durations by adolescents. Computers in Human Behavior, 25, 554–559. doi:10.1016/j.chb.2008.12.002

  273. Toplak, M. E., Dockstader, C., & Tannock, R. (2006). Temporal information processing in ADHD: Findings to date and new methods. Journal of Neuroscience Methods, 151, 15–26.

  274. Tracy, J. I., Faro, S. H., Mohamed, F. B., Pinsk, M., & Pinus, A. (2000). Functional localization of a “time keeper” function separate from attentional resources and task strategy. NeuroImage, 11, 228–242.

  275. Tregellas, J. R., Davalos, D. B., & Rojas, D. C. (2006). Effect of task difficulty on the functional anatomy of temporal processing. Neuro-Image, 32, 307–315.

  276. Treisman, M. (1963). Temporal discrimination and the indifference interval: Implications for a model of the “internal clock.” Psychological Monographs, 77(Whole no. 576).

  277. Treisman, M., Faulkner, A., Naish, P. L. N., & Brogan, D. (1990). The internal clock: Evidence for a temporal oscillation underlying time perception with some estimates of its characteristic frequency. Perception, 19, 705–743.

  278. Tse, C.-Y., & Penney, T. B. (2006). Preattentive timing of empty intervals is from marker offset to onset. Psychophysiology, 43, 172–179. doi:10.1111/j.1469-8986.2006.389.x

  279. Tse, P. U., Intriligator, J., Rivest, J., & Cavanagh, P. (2004). Attention and the subjective expansion of time. Perception & Psychophysics, 66, 1171–1189.

  280. Tulving, E. (2002). Chronesthesia: Conscious awareness of subjective time. In D. T. Stuss & R. T. Knight (Eds.), Principles of frontal lobe function (pp. 311–325). New York: Oxford University Press.

  281. Ulrich, R., Nitschke, J., & Rammsayer, T. (2006). Crossmodal temporal discrimination: Assessing the predictions of a general pacemaker- counter model. Perception & Psychophysics, 68, 1140–1152.

  282. Vicario, G. B. (2005). Il tempo. Saggio di psicologia sperimentale [On time: An essay in experimental psychology]. Bologna, Italy: Il Mulino.

  283. Volz, H.-P., Nenadic, I., Gaser, C., Rammsayer, T., Hager, F., & Sauer, H. (2001). Time estimation in schizophrenia: An fMRI study at adjusted levels of difficulty. NeuroReport, 12, 313–316. doi:10.1097/00001756-200102120-00026

  284. Wackermann, J. (2007). Inner and outer horizons of time experience. Spanish Journal of Psychology, 10, 20–32.

  285. Wackermann, J., & Ehm, W. (2006). The dual klepsydra model of internal time representation and time reproduction. Journal of Theoretical Biology, 239, 482–493. doi:10.1016/j.jtbi.2005.08.024

  286. Walker, J. T., & Scott, K. J. (1981). Auditory-visual conflicts in the perceived duration of lights, tones, and gaps. Journal of Experimental Psychology: Human Perception & Performance, 7, 1327–1339. doi:10.1037/0096-1523.7.6.1327

  287. Wallace, M., & Rabin, A. I. (1960). Temporal experience. Psychological Bulletin, 57, 213–235. doi:10.1037/h0041410

  288. Wearden, J. H. (1992). Temporal generalization in humans. Journal of Experimental Psychology: Animal Behavior Processes, 18, 134–144. doi:10.1037/0097-7403.18.2.134

  289. Wearden, J. H. (2003). Applying the scalar timing model to human time psychology: Progress and challenges. In H. Helfrich (Ed.), Time and mind II (pp. 21–39). Göttingen: Hogrefe & Huber.

  290. Wearden, J. H. (2004). Decision processes in models of timing. Acta Neurobiologiae Experimentalis, 64, 303–317.

  291. Wearden, J. H., Edwards, H., Fakhri, M., & Percival, A. (1998). Why “sounds are judged longer than lights”: Application of a model of the internal clock in humans. Quarterly Journal of Experimental Psychology, 51B, 97–120.

  292. Wearden, J. H., & Lejeune, H. (2008). Scalar properties in human timing: Conformity and violations. Quarterly Journal of Experimental Psychology, 61, 569–587. doi:10.1080/17470210701282576

  293. Wearden, J. H., Norton, R., Martin, S., & Montford-Bebb, O. (2007). Internal clock processes and the filled-duration illusion. Journal of Experimental Psychology: Human Perception & Performance, 33, 716–729. doi:10.1037/0096-1523.33.3.716

  294. Wearden, J. H., Smith-Spark, J. H., Cousins, R., Edelstyn, N. M. J., Cody, F. W. J., O’Boyle, D. J. (2008). Stimulus timing by people with Parkinson’s disease. Brain & Cognition, 67, 264–279. doi:10.1016/j.bandc.2008.01.010

  295. Wing, A. M. (2002). Voluntary timing and brain function: An information processing approach. Brain & Cognition, 48, 7–30. doi:10.1006/brcg.2001.1301

  296. Wing, A. M., & Kristofferson, A. B. (1973). Response delays and the timing of discrete motor responses. Perception & Psychophysics, 14, 5–12.

  297. Wittmann, M., & van Wassenhove, V. (EDS.) (2009). The experience of time: Neural mechanisms and the interplay of emotion, cognition and embodiment [Special issue]. Philosophical Transactions of the Royal Society B, 364(1525). doi:10.1098/rstb.2009.0025

  298. Woodrow, H. (1934). The temporal indifference interval determined by the method of average error. Journal of Experimental Psychology, 17, 167–188.

  299. Yarrow, K., Haggard, P., Heal, R., Brown, P., & Rothwell, J. C. (2001). Illusory perceptions of space and time preserve cross-saccadic perceptual continuity. Nature, 414, 302–305. doi:10.1038/35104551

  300. Yarrow, K., & Rothwell, J. C. E. (2003). Manual chronostasis: Tactile perception precedes physical contact. Current Biology, 13, 1334–1339. doi:10.1016/S0960-9822(03)00413-5

  301. Zakay, D. (1993). Time estimation methods—Do they influence prospective duration estimates? Perception, 22, 91–101. doi:10.1068/p220091

  302. Zakay, D. (1998). Attention allocation policy influences prospective timing. Psychonomic Bulletin & Review, 5, 114–118.

  303. Zakay, D., & Block, R. A. (1997). Temporal cognition. Current Directions in Psychological Science, 6, 12–16. doi:10.1111/1467-8721.ep11512604

  304. Zakay, D., & Block, R. A. (2004). Prospective and retrospective duration judgments: An executive-control perspective. Acta Neurobiologiae Experimentalis, 64, 319–328.

  305. Zeiler, M. D. (1998). On sundials, springs, and atoms. Behavioural Processes, 44, 89–99. doi:10.1016/S0376-6357(98)00042-4

  306. Zeiler, M. D. (1999). Time without clocks. Journal of the Experimental Analysis of Behavior, 71, 288–291. doi:10.1901/jeab.1999.71-288

  307. Zelaznik, H. N., Spencer, R. M. [C.], & Doffin, J. G. (2000). Temporal precision in tapping and circle drawing movements at preferred rates is not correlated: Further evidence against timing as a general purpose ability. Journal of Motor Behavior, 32, 193–199.

  308. Zelaznik, H. N., Spencer, R. M. C., & Ivry, R. B. (2002). Dissociation of explicit and implicit timing in repetitive tapping and drawing movements. Journal of Experimental Psychology: Human Perception & Performance, 28, 575–588. doi:10.1037/0096-1523.28.3.575

  309. Zelaznik, H. N., Spencer, R. M. C., & Ivry, R. B. (2008). Behavioral analysis of human movement timing. In S. Grondin (Ed.), Psychology of time (pp. 233–260). Bingley, U.K.: Emerald Group.

  310. Zimbardo, P., & Boyd, J. (1999). Putting time in perspective: A valid, reliable individual-differences metric. Journal of Personality & Social Psychology, 77, 1271–1288. doi:10.1037/0022-3514.77.6.1271

Download references

Author information

Correspondence to Simon Grondin.

Additional information

The present research was made possible by a research grant awarded by the Natural Sciences and Engineering Council of Canada (NSERC).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Grondin, S. Timing and time perception: A review of recent behavioral and neuroscience findings and theoretical directions. Attention, Perception, & Psychophysics 72, 561–582 (2010) doi:10.3758/APP.72.3.561

Download citation

Keywords

  • Experimental Psychology
  • Supplementary Motor Area
  • Time Perception
  • Contingent Negative Variation
  • Internal Clock