Attention, Perception, & Psychophysics

, Volume 72, Issue 2, pp 454–469

3-D localization of virtual sound sources: Effects of visual environment, pointing method, and training

  • Piotr Majdak
  • Matthew J. Goupell
  • Bernhard Laback
Research Articles


The ability to localize sound sources in three-dimensional space was tested in humans. In Experiment 1, naive subjects listened to noises filtered with subject-specific head-related transfer functions. The tested conditions included the pointing method (head or manual pointing) and the visual environment (VE; darkness or virtual VE). The localization performance was not significantly different between the pointing methods. The virtual VE significantly improved the horizontal precision and reduced the number of front-back confusions. These results show the benefit of using a virtual VE in sound localization tasks. In Experiment 2, subjects were provided with sound localization training. Over the course of training, the performance improved for all subjects, with the largest improvements occurring during the first 400 trials. The improvements beyond the first 400 trials were smaller. After the training, there was still no significant effect of pointing method, showing that the choice of either head- or manual-pointing method plays a minor role in sound localization performance. The results of Experiment 2 reinforce the importance of perceptual training for at least 400 trials in sound localization studies.


  1. Ahveninen, J., Jääskeläinen, I. P., Raij, T., Bonmassar, G., Devore, S., Hämäläinen, M., et al. (2006). Task-modulated “what” and “where” pathways in human auditory cortex. Proceedings of the National Academy of Sciences, 103, 14608–14613. doi:10.1073/ pnas.0510480103CrossRefGoogle Scholar
  2. Batschelet, E. (1981). Circular statistics in biology. London: Academic Press.Google Scholar
  3. Begault, D. R., Wenzel, E. M., & Anderson, M. R. (2001). Direct comparison of the impact of head tracking, reverberation, and individualized head-related transfer functions on the spatial perception of a virtual speech source. Journal of the Audio Engineering Society, 49, 904–916.PubMedCrossRefGoogle Scholar
  4. Bolia, R. S., D’Angelo, W. R., & McKinley, R. L. (1999). Aurally aided visual search in three-dimensional space. Human Factors, 41, 664–669. doi:10.1518/001872099779656789PubMedCrossRefGoogle Scholar
  5. Bronkhorst, A. W. (1995). Localization of real and virtual sound sources. Journal of the Acoustical Society of America, 98, 2542–2553. doi:10.1121/1.413219CrossRefGoogle Scholar
  6. Carlile, S., Leong, P., & Hyams, S. (1997). The nature and distribution of errors in sound localization by human listeners. Hearing Research, 114, 179–196. doi:10.1016/S0378-5955(97)00161-5PubMedCrossRefGoogle Scholar
  7. Djelani, T., Pörschmann, C., Sahrhage, J., & Blauert, J. (2000). An interactive virtual-environment generator for psychoacoustic research II: Collection of head-related impulse responses and evaluation of auditory localization. Acta Acustica United With Acustica, 86, 1046–1053.Google Scholar
  8. Efron, B., & Tibshirani, R. (1994). An introduction to the bootstrap. Boca Raton, FL: Chapman & Hall/CRC.Google Scholar
  9. Fritz, J. B., Elhilali, M., David, S. V., & Shamma, S. A. (2007). Does attention play a role in dynamic receptive field adaptation to changing acoustic salience in A1? Hearing Research, 229, 186–203. doi:10.1016/j.heares.2007.01.009PubMedCrossRefGoogle Scholar
  10. Getzmann, S. (2003). The influence of the acoustic context on vertical sound localization in the median plane. Perception & Psychophysics, 65, 1045–1057.CrossRefGoogle Scholar
  11. Haber, L., Haber, R. N., Penningroth, S., Novak, K., & Radgowski, H. (1993). Comparison of nine methods of indicating the direction to objects: Data from blind adults. Perception, 22, 35–47. doi:10.1068/p220035PubMedCrossRefGoogle Scholar
  12. Hawkey, D. J. C., Amitay, S., & Moore, D. R. (2004). Early and rapid perceptual learning. Nature Neuroscience, 7, 1055–1056. doi:10.1038/ nn1315PubMedCrossRefGoogle Scholar
  13. Heffner, H. E., & Heffner, R. S. (2005). The sound-localization ability of cats. Journal of Neurophysiology, 94, 3653–3655. doi:10.1152/ jn.00720.2005PubMedCrossRefGoogle Scholar
  14. Hofman, P. M., Van Riswick, J. G., & Van Opstal, A. J. (1998). Relearning sound localization with new ears. Nature Neuroscience, 1, 417–421. doi:10.1038/1633PubMedCrossRefGoogle Scholar
  15. Hyde, P. S., & Knudsen, E. I. (2001). A topographic instructive signal guides the adjustment of the auditory space map in the optic tectum. Journal of Neuroscience, 21, 8586–8593.PubMedGoogle Scholar
  16. Jones, B., & Kabanoff, B. (1975). Eye movements in auditory space perception. Perception & Psychophysics, 17, 241–245.CrossRefGoogle Scholar
  17. Kacelnik, O., Nodal, F. R., Parsons, C. H., & King, A. J. (2006). Training-induced plasticity of auditory localization in adult mammals. PLoS Biology, 4, e71. doi:10.1371/journal.pbio.0040071PubMedCrossRefGoogle Scholar
  18. Knudsen, E. I. (1994). Supervised learning in the brain. Journal of Neuro science, 14, 3985–3997.Google Scholar
  19. Knudsen, E. I. (2002). Instructed learning in the auditory localization pathway of the barn owl. Nature, 417, 322–328. doi:10.1038/ 417322aPubMedCrossRefGoogle Scholar
  20. Konishi, M. (1986). Centrally synthesized maps of sensory space. Trends in Neurosciences, 9, 163–168. doi:10.1016/0166-2236(86)90053-6CrossRefGoogle Scholar
  21. Langendijk, E. H. A., & Bronkhorst, A. W. (2002). Contribution of spectral cues to human sound localization. Journal of the Acoustical Society of America, 112, 1583–1596. doi:10.1121/1.1501901PubMedCrossRefGoogle Scholar
  22. Lewald, J., Dörrscheidt, G. J., & Ehrenstein, W. H. (2000). Sound localization with eccentric head position. Behavioural Brain Research, 108, 105–125. doi:10.1016/S0166-4328(99)00141-2PubMedCrossRefGoogle Scholar
  23. Lewald, J., & Ehrenstein, W. H. (1998). Auditory-visual spatial integration: A new psychophysical approach using laser pointing to acoustic targets. Journal of the Acoustical Society of America, 104, 1586–1597. doi:10.1121/1.424371PubMedCrossRefGoogle Scholar
  24. Macpherson, E. A., & Middlebrooks, J. C. (2003). Verticalplane sound localization probed with ripple-spectrum noise. Journal of the Acoustical Society of America, 114, 430–445. doi:10.1121/1.1582174PubMedCrossRefGoogle Scholar
  25. Majdak, P., Balazs, P., & Laback, B. (2007). Multiple exponential sweep method for fast measurement of head-related transfer functions. Journal of the Audio Engineering Society, 55, 623–637.Google Scholar
  26. Makous, J. C., & Middlebrooks, J. C. (1990). Two-dimensional sound localization by human listeners. Journal of the Acoustical Society of America, 87, 2188–2200. doi:10.1121/1.399186PubMedCrossRefGoogle Scholar
  27. Martin, R. L., McAnally, K., & Senova, M. A. (2001). Free-field equivalent localization of virtual audio. Journal of the Audio Engineering Society, 49, 14–22.Google Scholar
  28. Mason, R., Ford, N., Rumsey, F., & De Bruyn, B. (2001). Verbal and nonverbal elicitation techniques in the subjective assessment of spatial sound reproduction. Journal of the Audio Engineering Society, 49, 366–384.Google Scholar
  29. May, J. G., & Badcock, D. R. (2002). Vision and virtual environment. In K. M. Stanney (Ed.), Handbook of virtual environments (pp. 29–64). Mahwah, NJ: Erlbaum.Google Scholar
  30. Middlebrooks, J. C. (1999). Virtual localization improved by scaling nonindividualized external-ear transfer functions in frequency. Journal of the Acoustical Society of America, 106, 1493–1510. doi:10.1121/1.427147PubMedCrossRefGoogle Scholar
  31. Møller, H., Sørensen, M. F., Hammershøi, D., & Jensen, C. B. (1995). Head-related transfer functions of human subjects. Journal of the Audio Engineering Society, 43, 300–321.Google Scholar
  32. Montello, D. R., Richardson, A. E., Hegarty, M., & Provenza, M. (1999). A comparison of methods for estimating directions in egocentric space. Perception, 28, 981–1000. doi:10.1068/p2940PubMedCrossRefGoogle Scholar
  33. Morimoto, M., & Aokata, H. (1984). Localization cues in the upper hemisphere. Journal of the Acoustical Society of Japan, 5, 165–173.Google Scholar
  34. Oldfield, S. R., & Parker, S. P. A. (1984). Acuity of sound localization: A topography of auditory space. I. Normal hearing conditions. Perception, 13, 581–600. doi:10.1068/p130581PubMedCrossRefGoogle Scholar
  35. Perrett, S., & Noble, W. (1997). The contribution of head motion cues to localization of low-pass noise. Perception & Psychophysics, 59, 1018–1026.CrossRefGoogle Scholar
  36. Perrott, D. R., Cisneros, J., McKinley, R. L., & D’Angelo, W. R. (1996). Aurally aided visual search under virtual and free-field listening conditions. Human Factors, 38, 702–715. doi:10.1518/ 001872096778827260PubMedCrossRefGoogle Scholar
  37. Pinek, B., & Brouchon, M. (1992). Head turning versus manual pointing to auditory targets in normal hearing subjects and in subjects with right parietal damage. Brain & Cognition, 18, 1–11. doi:10.1016/0278-2626(92)90107-WCrossRefGoogle Scholar
  38. Redon, C., & Hay, L. (2005). Role of visual context and oculomotor conditions in pointing accuracy. NeuroReport, 16, 2065–2067. doi:10.1097/00001756-200512190-00020PubMedCrossRefGoogle Scholar
  39. Seeber, B. (2002). A new method for localization studies. Acta Acustica United With Acustica, 88, 446–450.Google Scholar
  40. Shelton, B. R., & Searle, C. L. (1980). The influence of vision on the absolute identification of sound-source position. Perception & Psychophysics, 28, 589–596.CrossRefGoogle Scholar
  41. Shinn-Cunningham, B. G., Durlach, N. I., & Held, R. M. (1998). Adapting to supernormal auditory localization cues. I. Bias and resolution. Journal of the Acoustical Society of America, 103, 3656–3666. doi:10.1121/1.423088PubMedCrossRefGoogle Scholar
  42. Wightman, F. L., & Kistler, D. J. (1989). Headphone simulation of free-field listening. II: Psychophysical validation. Journal of the Acoustical Society of America, 85, 868–878. doi:10.1121/1.397558PubMedCrossRefGoogle Scholar
  43. Wright, B. A., & Sabin, A. T. (2007). Perceptual learning: How much daily training is enough? Experimental Brain Research, 180, 727–736. doi:10.1007/s00221-007-0898-zCrossRefGoogle Scholar
  44. Zahorik, P., Bangayan, P., Sundareswaran, V., Wang, K., & Tam, C. (2006). Perceptual recalibration in human sound localization: Learning to remediate front-back reversals. Journal of the Acoustical Society of America, 120, 343–359. doi:10.1121/1.2208429PubMedCrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2010

Authors and Affiliations

  • Piotr Majdak
    • 1
  • Matthew J. Goupell
    • 1
  • Bernhard Laback
    • 1
  1. 1.Acoustics Research InstituteAustrian Academy of SciencesViennaAustria

Personalised recommendations