Attention, Perception, & Psychophysics

, Volume 71, Issue 5, pp 1042–1058 | Cite as

Interactions between endogenous and exogenous attention during vigilance

  • Katherine A. MacLean
  • Stephen R. Aichele
  • David A. Bridwell
  • George R. Mangun
  • Ewa Wojciulik
  • Clifford D. Saron
Research Articles

Abstract

The ability to remain vigilant over long periods of time is critical for many everyday tasks, but controlled studies of visual sustained attention show that performance declines over time when observers are required to respond to rare stimulus events (targets) occurring in a sequence of standard stimulus events (nontargets). When target discrimination is perceptually difficult, this vigilance decrement manifests as a decline in perceptual sensitivity. We examined whether sudden-onset stimuli could act as exogenous attentional cues to improve sensitivity during a traditional sustained attention task. Sudden-onset cues presented immediately before each stimulus attenuated the sensitivity decrement, but only when stimulus timing (the interstimulus interval [ISI]) was constant. When stimulus timing was variable, exogenous cues increased overall sensitivity but did not prevent performance decline. Finally, independent of the effects of sudden onsets, a constant ISI improved vigilance performance. Our results demonstrate that exogenous attention enhances perceptual sensitivity during vigilance performance, but that this effect is dependent on observers’ being able to predict the timing of stimulus events. Such a result indicates a strong interaction between endogenous and exogenous attention during vigilance. We relate our findings to a resource model of vigilance, as well as to theories of endogenous and exogenous attention over short time periods.

References

  1. Bakan, P. (1955). Discrimination decrement as a function of time in a prolonged vigil. Journal of Experimental Psychology, 50, 387–390. doi:10.1037/h0044041CrossRefPubMedGoogle Scholar
  2. Berger, C., & Mahneke, A. (1954). Fatigue in two simple visual tasks. American Journal of Psychology, 67, 509–512. doi:10.2307/1417942CrossRefPubMedGoogle Scholar
  3. Caggiano, D. M., & Parasuraman, R. (2004). The role of memory representation in the vigilance decrement. Psychonomic Bulletin & Review, 11, 932–937.CrossRefGoogle Scholar
  4. Carrasco, M., Ling, S., & Read, S. (2004). Attention alters appearance. Nature Neuroscience, 7, 308–313. doi:10.1038/nn1194CrossRefPubMedGoogle Scholar
  5. Carrasco, M., Penpeci-Talgar, C., & Eckstein, M. (2000). Spatial covert attention increases contrast sensitivity across the CSF: Support for signal enhancement. Vision Research, 40, 1203–1215. doi:10.1016/S0042-6989(00)00024-9CrossRefPubMedGoogle Scholar
  6. Carrasco, M., Williams, P. E., & Yeshurun, Y. (2002). Covert attention increases spatial resolution with or without masks: Support for signal enhancement. Journal of Vision, 2, 467–479. doi:10.1167/2.6.4CrossRefPubMedGoogle Scholar
  7. Chun, M. M., & Jiang, Y. (1998). Contextual cueing: Implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 36, 28–71. doi:10.1006/cogp.1998.0681CrossRefPubMedGoogle Scholar
  8. Colquhoun, W. P., & Baddeley, A. D. (1964). Role of pretest expectancy in vigilance decrement. Journal of Experimental Psychology, 68, 156–160. doi:10.1037/h0042875CrossRefPubMedGoogle Scholar
  9. Colquhoun, W. P., & Baddeley, A. D. (1967). Influence of signal probability during pretraining on vigilance decrement. Journal of Experimental Psychology, 73, 153–155. doi:10.1037/h0024087CrossRefPubMedGoogle Scholar
  10. Corbetta, M., Patel, G., & Shulman, G. L. (2008). The reorienting system of the human brain: From environment to theory of mind. Neuron, 58, 306–324. doi:10.1016/j.neuron.2008.04.017CrossRefPubMedGoogle Scholar
  11. Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3, 201–215. doi:10.1038/nrn755CrossRefPubMedGoogle Scholar
  12. Coren, S., Ward, L. M., & Enns, J. T. (1999). Sensation and perception (5th ed.). Fort Worth, TX: Harcourt-Brace.Google Scholar
  13. Coull, J. T. (2004). fMRI studies of temporal attention: Allocating attention within, or towards, time. Cognitive Brain Research, 21, 216–226. doi:10.1016/j.cogbrainres.2004.02.011CrossRefPubMedGoogle Scholar
  14. Coull, J. T., Frith, C. D., Büchel, C., & Nobre, A. C. (2000). Orienting attention in time: Behavioural and neuroanatomical distinction between exogenous and endogenous shifts. Neuropsychologia, 38, 808–819. doi:10.1016/S0028-3932(99)00132-3CrossRefPubMedGoogle Scholar
  15. Coull, J. T., & Nobre, A. C. (1998). Where and when to pay attention: The neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. Journal of Neuroscience, 18, 7426–7435.PubMedGoogle Scholar
  16. Davies, D. R., & Parasuraman, R. (1982). The psychology of vigilance. London: Academic Press.Google Scholar
  17. Davies, D. R., & Tune, G. S. (1969). Human vigilance performance. New York: American Elsevier.Google Scholar
  18. Fecteau, J. H., & Munoz, D. P. (2006). Salience, relevance, and firing: A priority map for target selection. Trends in Cognitive Sciences, 10, 382–390. doi:10.1016/j.tics.2006.06.011CrossRefPubMedGoogle Scholar
  19. Folk, C. L., Leber, A. B., & Egeth, H. E. (2002). Made you blink! Contingent attentional capture produces a spatial blink. Perception & Psychophysics, 64, 741–753.CrossRefGoogle Scholar
  20. Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception & Performance, 18, 1030–1044. doi:10.1037/0096-1523.18.4.1030CrossRefGoogle Scholar
  21. Frankmann, J. P., & Adams, J. A. (1962). Theories of vigilance. Psychological Bulletin, 59, 257–272. doi:10.1037/h0046142CrossRefPubMedGoogle Scholar
  22. Frome, F. S., MacLeod, D. I. A., Buck, S. L., & Williams, D. R. (1981). Large loss of visual sensitivity to flashed peripheral targets. Vision Research, 21, 1323–1328. doi:10.1016/0042-6989(81)90238-8CrossRefPubMedGoogle Scholar
  23. Geng, J. J., & Behrmann, M. (2005). Spatial probability as an attentional cue in visual search. Perception & Psychophysics, 67, 1252–1268.CrossRefGoogle Scholar
  24. Gottlieb, J. (2007). From thought to action: The parietal cortex as a bridge between perception, action, and cognition. Neuron, 53, 9–16. doi:10.1016/j.neuron.2006.12.009CrossRefPubMedGoogle Scholar
  25. Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics. New York: Wiley.Google Scholar
  26. Grier, R. A., Warm, J. S., Dember, W. N., Matthews, G., Galinsky, T. L., Szalma, J. L., & Parasuraman, R. (2003). The vigilance decrement reflects limitations in effortful attention, not mindlessness. Human Factors, 45, 349–359. doi:10.1518/hfes.45.3.349.27253CrossRefPubMedGoogle Scholar
  27. Helton, W. S., Hollander, T. D., Warm, J. S., Matthews, G., Dember, W. N., Wallaart, M., et al. (2005). Signal regularity and the mindlessness model of vigilance. British Journal of Psychology, 96, 249–261. doi:10.1348/000712605X38369CrossRefPubMedGoogle Scholar
  28. Helton, W. S., & Warm, J. S. (2008). Signal salience and the mindlessness theory of vigilance. Acta Psychologica, 129, 18–25. doi:10.1016/j.actpsy.2008.04.002CrossRefPubMedGoogle Scholar
  29. Hitchcock, E. M., Dember, W. N., Warm, J. S., Moroney, B. W., & See, J. E. (1999). Effects of cueing and knowledge of results on workload and boredom in sustained attention. Human Factors, 41, 365–372. doi:10.1518/001872099779610987CrossRefPubMedGoogle Scholar
  30. Hitchcock, E. M., Warm, J. S., Matthews, G., Dember, W. N., Shear, P. K., Tripp, L. D., et al. (2003). Automation cueing modulates cerebral blood flow and vigilance in a simulated air traffic control task. Theoretical Issues in Ergonomics Science, 4, 89–112. doi:10.1080/14639220210159726CrossRefGoogle Scholar
  31. Hoffmann, J., & Kunde, W. (1999). Location-specific target expectancies in visual search. Journal of Experimental Psychology: Human Perception & Performance, 25, 1127–1141. doi:10.1037/0096-1523.25.4.1127CrossRefGoogle Scholar
  32. Hopfinger, J. B., & Maxwell, J. S. (2005). Appearing and disappearing stimuli trigger a reflexive modulation of visual cortical activity. Brain Research: Cognitive Brain Research, 25, 48–56. doi:10.1016/j.cogbrainres.2005.04.010CrossRefPubMedGoogle Scholar
  33. Hopfinger, J. B., & West, V. M. (2006). Interactions between endogenous and exogenous attention on cortical visual processing. NeuroImage, 31, 774–789. doi:10.1016/j.neuroimage.2005.12.049CrossRefPubMedGoogle Scholar
  34. Jones, M. R., Moynihan, H., MacKenzie, N., & Puente, J. (2002). Temporal aspects of stimulus-driven attending in dynamic arrays. Psychological Science, 13, 313–319. doi:10.1111/1467-9280.00458CrossRefPubMedGoogle Scholar
  35. Jonides, J., & Yantis, S. (1988). Uniqueness of abrupt visual onset in capturing attention. Perception & Psychophysics, 43, 346–354.CrossRefGoogle Scholar
  36. Klein, R. M. (2000). Inhibition of return. Trends in Cognitive Sciences, 4, 138–147. doi:10.1016/S1364-6613(00)01452-2CrossRefPubMedGoogle Scholar
  37. LaBerge, D. (1998). Attentional emphasis in visual orienting and resolving. In R. D. Wright (Ed.), Visual attention (pp. 417–454). New York: Oxford University Press.Google Scholar
  38. Large, E. W., & Jones, M. R. (1999). The dynamics of attending: How people track time-varying events. Psychological Review, 106, 119–159. doi:10.1037/0033-295X.106.1.119CrossRefGoogle Scholar
  39. Leek, M. R. (2001). Adaptive procedures in psychophysical research. Perception & Psychophysics, 63, 1279–1292.CrossRefGoogle Scholar
  40. Ling, S., & Carrasco, M. (2006). When sustained attention impairs perception. Nature Neuroscience, 9, 1243–1245. doi:10.1038/nn1761CrossRefPubMedGoogle Scholar
  41. Liu, T., Pestilli, F., & Carrasco, M. (2005). Transient attention enhances perceptual performance and fMRI response in human visual cortex. Neuron, 45, 469–477. doi:10.1016/j.neuron.2004.12.039CrossRefPubMedGoogle Scholar
  42. Mackworth, N. H. (1948). The breakdown of vigilance during prolonged visual search. Quarterly Journal of Experimental Psychology, 1, 6–21.CrossRefGoogle Scholar
  43. Macmillan, N. A., & Creelman, C. D. (2005). Detection theory: A user’s guide (2nd ed.). Mahwah, NJ: Erlbaum.Google Scholar
  44. Mangun, G. R., & Hillyard, S. A. (1990). Allocation of visual attention to spatial locations: Tradeoff functions for event-related brain potentials and detection performance. Perception & Psychophysics, 47, 532–550.CrossRefGoogle Scholar
  45. Mangun, G. R., & Hillyard, S. A. (1991). Modulations of sensoryevoked brain potentials indicate changes in perceptual processing during visual-spatial priming. Journal of Experimental Psychology: Human Perception & Performance, 17, 1057–1074. doi:10.1037/0096-1523.17.4.1057CrossRefGoogle Scholar
  46. Manly, T., Robertson, I. H., Galloway, M., & Hawkins, K. (1999). The absent mind: Further investigations of sustained attention to response. Neuropsychologia, 37, 661–670. doi:10.1016/S0028-3932(98)00127-4CrossRefPubMedGoogle Scholar
  47. Martin, T., Egly, R., Houck, J. M., Bish, J. P., Barrera, B. D., Lee, D. C., & Tesche, C. D. (2005). Chronometric evidence for entrained attention. Perception & Psychophysics, 67, 168–184.Google Scholar
  48. Martínez, A., Di Russo, F., Anllo-Vento, L., & Hillyard, S. A. (2001). Electrophysiological analysis of cortical mechanisms of selective attention to high and low spatial frequencies. Clinical Neurophysiology, 112, 1980–1998. doi:10.1016/S1388-2457(01)00660-5CrossRefPubMedGoogle Scholar
  49. Mason, M. F., Norton, M. I., Van Horn, J. D., Wegner, D. M., Grafton, S. T., & Macrae, C. N. (2007). Wandering minds: The default network and stimulus-independent thought. Science, 315, 393–395. doi:10.1126/science.1131295CrossRefPubMedGoogle Scholar
  50. Maxwell, S. E., & Delaney, H. D. (2004). Designing experiments and analyzing data: A model comparison perspective (2nd ed.). Mahwah, NJ: Erlbaum.Google Scholar
  51. Milliken, B., Lupiáñez, J., Roberts, M., & Stevanovski, B. (2003). Orienting in space and time: Joint contributions to exogenous spatial cuing effects. Psychonomic Bulletin & Review, 10, 877–883.CrossRefGoogle Scholar
  52. Miniussi, C., Rao, A., & Nobre, A. C. (2002). Watching where you look: Modulation of visual processing of foveal stimuli by spatial attention. Neuropsychologia, 40, 2448–2460. doi:10.1016/S0028-3932(02)00080-5CrossRefPubMedGoogle Scholar
  53. Most, S. B., Simons, D. J., Scholl, B. J., Jimenez, R., Clifford, E., & Chabris, C. F. (2001). How not to be seen: The contribution of similarity and selective ignoring to sustained inattentional blindness. Psychological Science, 12, 9–17. doi:10.1111/1467-9280.00303CrossRefPubMedGoogle Scholar
  54. Müller, H. J., & Rabbitt, P. M. A. (1989). Reflexive and voluntary orienting of visual attention: Time course of activation and resistance to interruption. Journal of Experimental Psychology: Human Perception & Performance, 15, 315–330. doi:10.1037/0096-1523.15.2.315CrossRefGoogle Scholar
  55. Nuechterlein, K. H., Parasuraman, R., & Jiang, Q. (1983). Visual sustained attention: Image degradation produces rapid sensitivity decrement over time. Science, 220, 327–329. doi:10.1126/science.6836276CrossRefPubMedGoogle Scholar
  56. O’Connell, R. G., Bellgrove, M. A., Dockree, P. M., Lau, A., Fitzgerald, M., & Robertson, I. H. (2008). Self-Alert Training: Volitional modulation of autonomic arousal improves sustained attention. Neuropsychologia, 46, 1379–1390. doi:10.1016/j.neuropsychologia.2007.12.018CrossRefPubMedGoogle Scholar
  57. Olson, I. R., & Chun, M. M. (2001). Temporal contextual cuing of visual attention. Journal of Experimental Psychology: Learning, Memory, & Cognition, 27, 1299–1313. doi:10.1037/0278-7393.27.5.1299CrossRefGoogle Scholar
  58. Parasuraman, R. (1979). Memory load and event rate control sensitivity decrements in sustained attention. Science, 205, 924–927. doi:10.1126/science.472714CrossRefPubMedGoogle Scholar
  59. Parasuraman, R. (1986). Vigilance, monitoring and search. In K. R. Boff, L. Kaufman, & J. P. Thomas (Eds.), Handbook of perception and human performance: Vol. 2. Cognitive processes and performance (pp. 1–39). New York: Wiley.Google Scholar
  60. Parasuraman, R., & Davies, D. R. (1976). Decision theory analysis of response latencies in vigilance. Journal of Experimental Psychology: Human Perception & Performance, 2, 578–590. doi:10.1037/0096-1523.2.4.578CrossRefGoogle Scholar
  61. Parasuraman, R., & Davies, D. R. (1977). A taxonomic analysis of vigilance. In R. R. Mackie (Ed.), Vigilance: Theory, operational performance, and physiological correlates (pp. 559–574). New York: Plenum.Google Scholar
  62. Parasuraman, R., & Mouloua, M. (1987). Interaction of signal discriminability and task type in vigilance decrement. Perception & Psychophysics, 41, 17–22.CrossRefGoogle Scholar
  63. Paus, T., Zatorre, R. J., Hofle, N., Caramanos, Z., Gotman, J., Petrides, M., & Evans, A. C. (1997). Time-related changes in neural systems underlying attention and arousal during the performance of an auditory vigilance task. Journal of Cognitive Neuroscience, 9, 392–408. doi:10.1162/jocn.1997.9.3.392CrossRefGoogle Scholar
  64. Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32, 3–25.CrossRefPubMedGoogle Scholar
  65. Posner, M., & Cohen, Y. (1984). Components of attention. In H. Bouma & D. G. Bouwhuis (Eds.), Attention and performance X: Control of language processes (pp. 531–556). Hillsdale, NJ: Erlbaum.Google Scholar
  66. Richard, C. M., Wright, R. D., & Ward, L. M. (2003). Goal-driven modulation of stimulus-driven attentional capture in multiple-cue displays. Perception & Psychophysics, 65, 939–955.CrossRefGoogle Scholar
  67. Robertson, I. H., Manly, T., Andrade, J., Baddeley, B. T., & Yiend, J. (1997). “Oops!”: Performance correlates of everyday attentional failures in traumatic brain injured and normal subjects. Neuropsychologia, 35, 747–758. doi:10.1016/S0028-3932(97)00015-8CrossRefPubMedGoogle Scholar
  68. Robertson, I. H., Mattingley, J. B., Rorden, C., & Driver, J. (1998). Phasic alerting of neglect patients overcomes their spatial deficit in visual awareness. Nature, 395, 169–172. doi:10.1038/25993CrossRefPubMedGoogle Scholar
  69. Robertson, I. H., Tegnér, R., Tham, K., Lo, A., & Nimmo-Smith, I. (1995). Sustained attention training for unilateral neglect: Theoretical and rehabilitation implications. Journal of Clinical & Experimental Neuropsychology, 17, 416–430. doi:10.1080/01688639508405133CrossRefGoogle Scholar
  70. Ruz, M., & Lupiáñez, J. (2002). A review of attentional capture: On its automaticity and sensitivity to endogenous control. Psicológica, 23, 283–309.Google Scholar
  71. Santangelo, V., & Spence, C. (2008). Is the exogenous orienting of spatial attention truly automatic? Evidence from unimodal and multisensory studies. Consciousness & Cognition, 17, 989–1015. doi:10.1016/j.concog.2008.02.006CrossRefGoogle Scholar
  72. Scerbo, M. W., Warm, J. S., Doettling, V. S., Parasuraman, R., & Fisk, A. D. (1987). Event asynchrony and task demands in sustained attention. In L. S. Mark, J. S. Warm, & R. L. Huston (Eds.), Ergonomics and human factors: Recent research (pp. 33–39). New York: Springer.Google Scholar
  73. See, J. E., Howe, S. R., Warm, J. S., & Dember, W. N. (1995). Metaanalysis of the sensitivity decrement in vigilance. Psychological Bulletin, 117, 230–249. doi:10.1037/0033-2909.117.2.230CrossRefGoogle Scholar
  74. See, J. E., Warm, J. S., Dember, W. N., & Howe, S. R. (1997). Vigilance and signal detection theory: An empirical evaluation of five measures of response bias. Human Factors, 39, 14–29. doi:10.1518/001872097778940704CrossRefGoogle Scholar
  75. Serences, J. T., Shomstein, S., Leber, A. B., Golay, X., Egeth, H. E., & Yantis, S. (2005). Coordination of voluntary and stimulus-driven attentional control in human cortex. Psychological Science, 16, 114–122. doi:10.1111/j.0956-7976.2005.00791.xCrossRefPubMedGoogle Scholar
  76. Silver, M. A., Ress, D., & Heeger, D. J. (2007). Neural correlates of sustained spatial attention in human early visual cortex. Journal of Neurophysiology, 97, 229–237. doi:10.1152/jn.00677.2006CrossRefPubMedGoogle Scholar
  77. Simons, D. J., & Chabris, C. F. (1999). Gorillas in our midst: Sustained inattentional blindness for dynamic events. Perception, 28, 1059–1074. doi:10.1068/p2952CrossRefPubMedGoogle Scholar
  78. Smallwood, J., Beach, E., Schooler, J. W., & Handy, T. C. (2008). Going AWOL in the brain: Mind wandering reduces cortical analysis of external events. Journal of Cognitive Neuroscience, 20, 458–469. doi:10.1162/jocn.2008.20.3.458CrossRefPubMedGoogle Scholar
  79. Smallwood, J., & Schooler, J. W. (2006). The restless mind. Psychological Bulletin, 132, 946–958. doi:10.1037/0033-2909.132.6.946CrossRefPubMedGoogle Scholar
  80. Smit, A. S., Eling, P. A. T. M., & Coenen, A. M. L. (2004). Mental effort causes vigilance decrease due to resource depletion. Acta Psychologica, 115, 35–42. doi:10.1016/j.actpsy.2003.11.001CrossRefPubMedGoogle Scholar
  81. Stanislaw, H., & Todorov, N. (1999). Calculation of signal detection theory measures. Behavior Research Methods, Instruments, & Computers, 31, 137–149.CrossRefGoogle Scholar
  82. Steinman, B. A., Steinman, S. B., & Lehmkuhle, S. (1997). Transient visual attention is dominated by the magnocellular stream. Vision Research, 37, 17–23. doi:10.1016/S0042-6989(96)00151-4CrossRefPubMedGoogle Scholar
  83. Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643–662. doi:10.1037/h0054651CrossRefGoogle Scholar
  84. Szalma, J. L., Warm, J. S., Matthews, G., Dember, W. N., Weiler, E. M., Meier, A., & Eggemeier, F. T. (2004). Effects of sensory modality and task duration on performance, workload, and stress in sustained attention. Human Factors, 46, 219–233. doi:10.1518/hfes.46.2.219.37334CrossRefPubMedGoogle Scholar
  85. Taylor, M. M., & Creelman, C. D. (1967). PEST: Efficient estimates on probability functions. Journal of the Acoustical Society of America, 41, 782–787. doi:10.1121/1.1910407CrossRefGoogle Scholar
  86. Theeuwes, J. (1991). Exogenous and endogenous control of attention: The effect of visual onsets and offsets. Perception & Psychophysics, 49, 83–90.CrossRefGoogle Scholar
  87. van der Lubbe, R. H. J., & Postma, A. (2005). Interruption from irrelevant auditory and visual onsets even when attention is in a focused state. Experimental Brain Research, 164, 464–471. doi:10.1007/s00221-005-2267-0CrossRefGoogle Scholar
  88. Van Voorhis, S. [T.], & Hillyard, S. A. (1977). Visual evoked potentials and selective attention to points in space. Perception & Psychophysics, 22, 54–62.CrossRefGoogle Scholar
  89. Warm, J. S., & Jerison, H. J. (1984). The psychophysics of vigilance. In J. S. Warm (Ed.), Sustained attention in human performance (pp. 15–59). Chichester, U.K.: Wiley.Google Scholar
  90. Warm, J. S., Parasuraman, R., & Matthews, G. (2008). Vigilance requires hard mental work and is stressful. Human Factors, 50, 433–441. doi:10.1518/001872008X312152CrossRefPubMedGoogle Scholar
  91. Weissman, D. H., Roberts, K. C., Visscher, K. M., & Woldorff, M. G. (2006). The neural bases of momentary lapses in attention. Nature Neuroscience, 9, 971–978. doi:10.1038/nn1727CrossRefPubMedGoogle Scholar
  92. Wiener, E. L. (1973). Adaptive measurement of vigilance decrement. Ergonomics, 16, 353–363. doi:10.1080/00140137308924527CrossRefPubMedGoogle Scholar
  93. Williams, P. S. (1986). Processing demands, training, and the vigilance decrement. Human Factors, 28, 567–579.Google Scholar
  94. Wright, R. D., & Richard, C. M. (2003). Sensory mediation of stimulus-driven attentional capture in multiple-cue displays. Perception & Psychophysics, 65, 925–938.CrossRefGoogle Scholar
  95. Yantis, S., & Jonides, J. (1990). Abrupt visual onsets and selective attention: Voluntary versus automatic allocation. Journal of Experimental Psychology: Human Perception & Performance, 16, 121–134. doi:10.1037/0096-1523.16.1.121CrossRefGoogle Scholar
  96. Yeshurun, Y., & Carrasco, M. (1999). Spatial attention improves performance in spatial resolution tasks. Vision Research, 39, 293–306. doi:10.1016/S0042-6989(98)00114-XCrossRefPubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2009

Authors and Affiliations

  • Katherine A. MacLean
    • 1
  • Stephen R. Aichele
    • 1
  • David A. Bridwell
    • 2
  • George R. Mangun
    • 1
  • Ewa Wojciulik
    • 1
  • Clifford D. Saron
    • 1
  1. 1.Center for Mind and BrainUniversity of CaliforniaDavis
  2. 2.University of CaliforniaIrvine

Personalised recommendations