Attention, Perception, & Psychophysics

, Volume 71, Issue 3, pp 451–462 | Cite as

Knowledge alters visual contrast sensitivity

  • Stephan de la Rosa
  • Michael Gordon
  • Bruce A. Schneider
Research Articles


Research has shown that the visual system’s sensitivity to variations in luminance (visual contrast) within a particular area of the retina is affected in a bottom-up fashion by the ambient contrast levels in nearby regions. Specifically, changes in the ambient contrast in areas surrounding the target area alter the sensitivity to visual contrast within the target area. More recent research has shown that paying attention to the target or target area modulates contrast sensitivity, suggesting a top-down influence over contrast sensitivity that is mediated by attention. Here we report another form of top-down influence over contrast sensitivity that is unlikely to be mediated by attention. In particular, we show that knowledge and/or expectations about the levels of visual contrast that may appear in upcoming targets also affect how sensitive the observer is to the contrast in the target. This sort of knowledge-driven, top-down contrast sensitivity control could be used to preset the visual system’s contrast sensitivity to maximize discriminability and to protect contrast-sensitive processes from a contrast overload. Overall, our results suggest that existing models of contrast sensitivity might benefit from the inclusion of top-down control mechanisms.


Contrast Sensitivity Fixation Stimulus Stimulus Contrast Perceptual Channel Effective Contrast 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Albrecht, D. G., & Geisler, W. S. (1991). Motion selectivity and the contrast-response function of simple cells in the visual cortex. Visual Neuroscience, 7, 531–546.CrossRefPubMedGoogle Scholar
  2. Albrecht, D. G., & Hamilton, D. B. (1982). Striate cortex of monkey and cat: Contrast response function. Journal of Neurophysiology, 48, 217–237.PubMedGoogle Scholar
  3. Boynton, G. M., & Foley, J. M. (1999). Temporal sensitivity of human luminance pattern mechanisms determined by masking with temporally modulated stimuli. Vision Research, 39, 1641–1656.CrossRefPubMedGoogle Scholar
  4. Braida, L. D., & Durlach, N. I. (1972). Intensity perception: II. Resolution in one-interval paradigms. Journal of the Acoustical Society of America, 51, 483–502.CrossRefGoogle Scholar
  5. Carandini, M., & Ferster, D. (1997). A tonic hyperpolarization underlying contrast adaptation in cat visual cortex. Science, 276, 949–952.CrossRefPubMedGoogle Scholar
  6. Carrasco, M., Ling, S., & Read, S. (2004). Attention alters appearance. Nature Neuroscience, 7, 308–313.CrossRefPubMedGoogle Scholar
  7. Ciaramitaro, V. M., Cameron, E. L., & Glimcher, P. W. (2001). Stimulus probability directs spatial attention: An enhancement of sensitivity in humans and monkeys. Vision Research, 41, 57–75.CrossRefPubMedGoogle Scholar
  8. Davis, E. T., Kramer, P., & Graham, N. (1983). Uncertainty about spatial frequency, spatial position, or contrast of visual patterns. Perception & Psychophysics, 33, 20–28.Google Scholar
  9. Foley, J. M. (1994). Human luminance pattern-vision mechanisms: Masking experiments require a new model. Journal of the Optical Society of America, 11, 1710–1719.CrossRefPubMedGoogle Scholar
  10. Frazor, R. A., & Geisler, W. S. (2006). Local luminance and contrast in natural images. Vision Research, 46, 1585–1598.CrossRefPubMedGoogle Scholar
  11. Gardner, J. L., Sun, P. Waggoner, R. A., Ueno, K., Tanaka, K., & Cheng, K. (2005). Contrast adaptation and representation in human early visual cortex. Neuron, 47, 607–620.CrossRefPubMedGoogle Scholar
  12. Gilchrist, A., Kossyfidis, C., Bonato, F., Agostini, T., Cataliotti, J., Li, X., et al. (1999). An anchoring theory of lightness perception. Psychological Review, 106, 795–834.CrossRefPubMedGoogle Scholar
  13. Graham, N., & Sutter, A. (2000). Normalization: Contrast-gain control in simple (Fourier) and complex (non-Fourier) pathways of pattern vision. Vision Research, 20, 2737–2761.CrossRefGoogle Scholar
  14. Huang, L., & Dobkins, K. R. (2005). Attentional effects on contrast discrimination in humans: Evidence for both contrast gain and response gain. Vision Research, 45, 1201–1212.CrossRefPubMedGoogle Scholar
  15. Ling, S., & Carrasco, M. (2006). Sustained and transient covert attention enhance the signal via different contrast response functions. Vision Research, 46, 1210–1220.CrossRefPubMedGoogle Scholar
  16. Macmillan, N. A., & Creelman, C. D. (2005). Detection theory: A user’s guide. Mahwah, NJ: Erlbaum.Google Scholar
  17. Martinez-Trujillo, J. C., & Treue, S. (2002). Attentional modulation strength in cortical area MT depends on stimulus contrast. Neuron, 35, 365–370.CrossRefPubMedGoogle Scholar
  18. Ohzawa, I., Sclar, G., & Freeman, R. D. (1982). Contrast gain control in the cat visual cortex. Nature, 298, 266–268.CrossRefPubMedGoogle Scholar
  19. Parker, S., Murphy, D. R., & Schneider, B. A. (2002). Top-down gain control in the auditory system: Evidence from identification and discrimination experiments. Perception & Psychophysics, 64, 598–615.Google Scholar
  20. Pestilli, F., Viera, G., & Carrasco, M. (2007). How do attention and adaptation affect contrast sensitivity? Journal of Vision, 7, 1–12.CrossRefPubMedGoogle Scholar
  21. Porciatti, V., Bonanni, P., Fiorentini, A., & Guerrini, R. (2000). Lack of cortical contrast gain control in human photosensitive epilepsy. Nature Neuroscience, 3, 259–263.CrossRefPubMedGoogle Scholar
  22. Reynolds, J. H., Pasternak, T., & Desimone, R. (2000). Attention increases sensitivity of V4 neurons. Neuron, 26, 703–714.CrossRefPubMedGoogle Scholar
  23. Rose, D., & Pardhan, S. (2000). Selective attention, ideal observer theory and “early” visual channels. Spatial Vision, 14, 77–80.CrossRefPubMedGoogle Scholar
  24. Ross, J., & Speed, H. D. (1991). Contrast adaptation and contrast masking in human vision. Proceedings of the Royal Society B, 246, 61–70.CrossRefPubMedGoogle Scholar
  25. Wilson, H. R., & Humanski, R. (1993). Spatial frequency adaptation and contrast gain control. Vision Research, 33, 1133–1149.CrossRefPubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2009

Authors and Affiliations

  • Stephan de la Rosa
    • 1
  • Michael Gordon
    • 1
  • Bruce A. Schneider
    • 1
  1. 1.University of TorontoMississaugaCanada

Personalised recommendations