Skip to main content
Log in

Influence of Co content on the biocompatibility and bio-corrosion of super ferritic stainless steels

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Bio-metals require high corrosion resistance, because their biocompatibility is closely related to this parameter. Bio-metals release metal ions into the human body, leading to deleterious effects. Allergies, dermatitis, and asthma are the predominant systemic effects resulting in the human body. In particular, Ni is one of the most common causes of allergic contact dermatitis. In the present work, we designed new ferritic stainless steels wherein Ni is replaced with Co under consideration of allergic respondes and microstructural stability. This work focuses on the effect of Co content on the biocompatibility and corrosion resistance of high PRE super ferritic stainless steels in bio-solution and acidic chloride solution. In the case of the acidic chloride solution, with increasing Co content in the ferritic stainless steels, passive current density increased and critical pitting temperature (CPT) decreased. Also, in the passive state, AC impedance and repassivation rate were reduced. These results are attributed to the thermodynamic stability of cobalt ions, as indicated in the EpH diagram for a Co-H2O system. However, in the case of bio-solutions, with increasing Co content of the alloys, the passive current density decreased. AC impedance and repassivation rate meanwhile increased in the passive state. This is due to the increased ratios of Cr2O3/Cr(OH)3 and [Metal Oxide]/Metal + Metal Oxide] of the passive film formed in bio-solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. G. Kim,J. Kor. Inst. Electric. Electron. Mater. Eng. 15, 18 (2002).

    Google Scholar 

  2. K. A. Gross and C. C. Berndt,2 nd Plasma-Technik Symposium,3, 159 (1991).

    Google Scholar 

  3. G. T. Oh, Y. S. Kim, and G. N. Kim,Met. Mater.-Int. 42, 64 (2004).

    CAS  Google Scholar 

  4. J. Black and G. Hastings,Handbook of Biomaterial Properties, Chapman & Hall, New York (1998).

    Google Scholar 

  5. B. D. Ratner, A. S. Hoffman, F. J. Schoen, and J. E. Lemons,Biomaterials Science An Introduction to Materials in Medicine, Academic Press, San Diego (1997).

    Google Scholar 

  6. J. A. Helsen and H. J. Breme,Metals as Biomaterials. John Wiley & Sons Ltd., West Sussex (1998).

    Google Scholar 

  7. P. Haudrechy, B. Mantout, and A. Frappax,Contact Dermatitis 37, 113 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. J. R. Fisher and G. A. Rosenblum,J. Am. Med. Assoc. 248, 1065 (1982).

    Article  CAS  Google Scholar 

  9. J. K. Bass, H. Fine and G. J. Cisneros,Am. J. Orthod. Dentofac. Orthop. 103, 280 (1993).

    Article  CAS  Google Scholar 

  10. J. Beddoes and J. Gordon Parr,Introduction to Stainless Steels, ASM International, Materials Park, OH, USA (1999).

    Google Scholar 

  11. M. Pourbaix,Atlas of Electrochemical Equilibria, NACE, Houston, Texas, USA (1974).

    Google Scholar 

  12. A. Yoshitake, A. Kuhara, and T. Ishii, Ferritic-Austenitic Duplex Stainless Steel,United States Patent Number 5,238,508 (1990).

  13. J. B. Park and J. D. Bronzino,Biomaterials, Principles and Applications, CRC Press (2003).

  14. D. F. Williams, “Biocompatibility in Clinical Practice”, CRC Press (1982).

  15. D. Granchi, G. Ciapetti, L. Savarino, D. Cavendagna, M. E. Donati and A. Pizzoferrato,J. Biomed. Mater. Res. 31, 183 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. ISO 7405:1997(E), “Dentistry-Preclinical Evaluation of Biocompatibility of Medical Devices used in Dentistry-Test Methods for Dental Materials”, ISO (1997).

  17. Y. R. Yoo, S. G. Jang, K. T. Oh, J. G. Kim, and Y. S. Kim,J. Biomed. Mater. Res. B 86, 310 (2008).

    Google Scholar 

  18. K. T. Oh, Y. S. Kim, Y. S. Park, and K. N. Kim,J. Biomed. Mater. Res. B 69, 183 (2004).

    Article  CAS  Google Scholar 

  19. ASTM G48-00,Standard Test Methods for Pitting and Crevice Corrosion Resistance of Stainless Steels and Related Alloys by Use of Ferric Chloride Solution, ASTM (2000).

  20. XPS Database Systems,XPS & AES Software & XPS Spectra Handbooks, http://www.xpsdata.com (2007).

  21. F. P. Ford,Corrosion 52, 375 (1996).

    Article  CAS  Google Scholar 

  22. Y. S. Kim,Met. Mater.-Int. 4, 183 (1998).

    CAS  Google Scholar 

  23. Y. S. Kim, Y. S. Park, B. Mitton, and R. Latanision,Proc. Symposium on Critical Factors in Localized Corrosion III (eds., R. G. Kelly, G. S. Frankel, P. M. Natishan, and R. C. Newman), p. 89, The Electrochemical Society, USA (1999).

    Google Scholar 

  24. Y. S. Kim, Y. S. Park,J. Corros. Sci. Soc. Kor 18, 97 (1989).

    CAS  Google Scholar 

  25. C. R. Clayton, C. R. Clayton, and Y. C. Lu.J. Electrochem. Soc. 133, 2465 (1986).

    Article  CAS  Google Scholar 

  26. K. S. Kim, H. Y. Chang, and Y. S. Kim,Corros. Sci. Tech. 2, 75 (2003).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. S. Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoo, Y.R., Jang, S.G., Nam, H.S. et al. Influence of Co content on the biocompatibility and bio-corrosion of super ferritic stainless steels. Met. Mater. Int. 14, 729–738 (2008). https://doi.org/10.3365/met.mat.2008.12.729

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.3365/met.mat.2008.12.729

Key words

Navigation