Advertisement

Metals and Materials International

, Volume 14, Issue 3, pp 373–379 | Cite as

Effect of bonding conditions on conduction behavior of anisotropic conductive film interconnection

  • Jong-Woong Kim
  • Young-Chul Lee
  • Seung-Boo Jung
Article

Abstract

This paper presents an investigation on the conduction behaviors of the anisotropic conductive film (ACF) interconnections bonded at various bonding forces. The connection resistance of the ACF joints decreased with increasing bonding force up to 70 N, but subsequently converged to a value of 10 mΩ at bonding forces above 70N. This convergence of the connection resistance in the ACF joints was due to two opposing factors: decreased resistance due to increased contact area and increased resistance due to decreased currentflow path that may have been affected by the delamination of the metal film from the polymeric cores at high bonding forces. During thermal shock testing of the adhesive joints, two different conduction behaviors were observed: increasing connection resistance and the termination of Ohmic behavior. The former was due to decreased contact areas caused by warpage of the package, whereas the latter was caused by delamination at the interface.

Keywords

anisotropic conductive film conduction mechanism thermal shock connection resistance flip chip 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. T. Peng, C. M. Liu, J. C. Lin, H. C. Cheng, and K. N. Chiang,IEEE T. Comp. Pack. Tech. 27, 684 (2004).CrossRefGoogle Scholar
  2. 2.
    Y. H. Liu and K. L. Lin,J. Mater. Res. 20, 2184 (2005).CrossRefADSGoogle Scholar
  3. 3.
    J. W. Kim, D. G. Kim, W. S. Hong, and S. B. Jung,J. Electron. Mater. 34, 1550 (2005).CrossRefADSGoogle Scholar
  4. 4.
    J. W. Kim and S. B. Jung,Microelectron. Eng. 82, 554 (2005).CrossRefGoogle Scholar
  5. 5.
    Y. L. Zhang, D. X. Q. Shi, and W. Zhou,Microelectron. Reliab. 46, 409 (2006).CrossRefGoogle Scholar
  6. 6.
    Y. Li, K. S. Moon, and C. P. Wong,J. Electron. Mater. 34, 1573 (2005).CrossRefADSGoogle Scholar
  7. 7.
    W. J. Plumbridge,Solder. Surf. Mt. Tech. 16, 13 (2004).CrossRefGoogle Scholar
  8. 8.
    Y. Li, and C. P. Wong,Mat. Sci. Eng. R 51, 1 (2006).CrossRefGoogle Scholar
  9. 9.
    M. J. Yim and K. W. Paik,IEEE T. Comp. Pack. Manu. Tech. 21, 226 (1998).CrossRefGoogle Scholar
  10. 10.
    Y. Chen and C. A. Schuh,Acta mater. 54, 4709 (2006).CrossRefGoogle Scholar
  11. 11.
    D. Klosterman, L. Li, and J. E. Morris,IEEE T. Comp. Pack. Manu. Tech. 21, 23 (1998).CrossRefGoogle Scholar
  12. 12.
    G. R. Ruschau, S. Yoshikawa, and R. E., Newnham,J. Appl. Phys. 72, 953 (1992).CrossRefADSGoogle Scholar
  13. 13.
    J. W. Kim and S. B. Jung,J. Electron. Mater. 36, 1199 (2007).CrossRefADSGoogle Scholar
  14. 14.
    J. W. Kim and S. B. Jung,Mat. Sci. Eng. A 452–453, 267 (2007).CrossRefGoogle Scholar
  15. 15.
    W. S. Kwon, S. J. Ham, and K. W. Paik,Microelectron. Reliab.46, 589 (2006).CrossRefGoogle Scholar
  16. 16.
    W. S. Kwon and K. W. Paik,Int. J. Adh. Adh. 24, 135 (2004).CrossRefGoogle Scholar
  17. 17.
    W. S. Kwon, S. Y. Yang, S. B. Lee, and K. W. PaikIEEE T. Comp. Pack. Tech. 29, 688 (2006).CrossRefGoogle Scholar
  18. 18.
    J. Maattanen,Solder. Surf. Mt. Tech. 15, 12 (2003).CrossRefGoogle Scholar
  19. 19.
    J. S. Hwang, M. J. Yim, and K. W. Paik,J. Electron. Mater. 35, 1722 (2006).CrossRefADSGoogle Scholar
  20. 20.
    W. S. Kwon and K. W. Paik,J. Appl. Polym. 93, 2634 (2004).CrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Jong-Woong Kim
    • 1
  • Young-Chul Lee
    • 1
  • Seung-Boo Jung
    • 1
  1. 1.School of Advanced Materials Science and EngineeringSungkyunkwan UniversityGyeonggiKorea

Personalised recommendations