Effect of Nb and Sn on the transformation of α-Ti to β-Ti in Ti-35 Nb−2.5Sn nanostructure alloys using mechanical alloying

  • A. M. Omran
  • K. D. Woo
  • D. K. Kim
  • S. W. Kim
  • M. S. Moon
  • N. A. Barakat
  • D. L. Zhang
Article

Abstract

This study was conducted to observe the phase transformation of Ti-35 %Nb-2.5 %Sn during milling for various milling times using a mixing machine and a high-energy ball milling machine (HEBM). In this work, niobium was chosen as the β stabilizer and tin as the reducer of the elastic modulus. The starting materials were blended and milled in a mixing machine (24 h) and a high-energy ball mill machine (1 h, 4 h, and 12 h). The particle sizes and phases of the produced powders were analyzed using XRD, SEM, TEM, and PSD; the titanium was found to be fully transformed from the α phase to Ti the β phase Ti after 12 h of milling.

Keywords

biomedical materials Ti−Nb−Sn alloys β titanium mechanical alloying 

References

  1. 1.
    D. M. Gordin, T. Gloriant, G. Nemtoi, R. Chelariu, N. Aelenei, A. Guillou, and D. Ansel,Mater. Lett. 59, 2936 (2005).CrossRefGoogle Scholar
  2. 2.
    L. M. Elias, S. G. Schneider, S. Schneider, H. M. Silva, and F. Malvisi,Mater. Sci. Eng. A 432, 108 (2006).CrossRefGoogle Scholar
  3. 3.
    Y. L. Zhou, M. Niinomi, and T. Akahori,Mater. Sci. Eng. A 384, 92 (2004).CrossRefGoogle Scholar
  4. 4.
    H. S. Kim, W. Y. Kim, and S. H. Lim,Scripta materialia 54, 887 (2006).CrossRefGoogle Scholar
  5. 5.
    Y. Mantani and M. Tajima,Mater. Sci. Eng. A 438–440, 315 (2006).Google Scholar
  6. 6.
    E. Takahashi, T. Sakurai, S. Watanabe, N. Masahashi, and S. Hanada,Mater. Trans. 43, 2978 (2002).CrossRefGoogle Scholar
  7. 7.
    E. Eisenbarth, J. Breme, and H. Hildebrand,Biomaterialien 2, 4 (2001).Google Scholar
  8. 8.
    H. Y. Kim, J. I. Kim, T. Inamura, H. Hosoda, and S. Miyazaki,Mater. Sci. Eng. A 438–440, 839 (2006).Google Scholar
  9. 9.
    J. I. Kim, H. Y. Kim, T. Inamura, H. Hosoda, and S. Miyazaki,Mater. Sci. Eng. A 403, 334 (2005).CrossRefGoogle Scholar
  10. 10.
    S. H. Jang, K. H. Lee, and K. H. Baik,J. Kor. Inst. Met. & Mater. 43, 418 (2005).Google Scholar
  11. 11.
    H. S. Kim, S. H. Lim, I. D. Yeo, and W. Y. Kim,Mate. Sci. Eng. A 449–451, 322 (2007).CrossRefGoogle Scholar
  12. 12.
    D. Doraiswamy and S. Ankem,Acta mater. 51, 1607 (2003).CrossRefGoogle Scholar
  13. 13.
    D. Eylon,Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, 10 th ed., Vol. 2, ASM International Handbook Committee (1990).Google Scholar
  14. 14.
    S. Nag, R. Banerjee, and H. L. Fraser,Acta biomater. 3, 369 (2007).PubMedCrossRefGoogle Scholar
  15. 15.
    R. Ding, I. P. Jones, and H. Jiao,Mater. Sci. Eng. A 458, 126 (2007).CrossRefGoogle Scholar
  16. 16.
    S. E. Kim, J. H. Son, Y. T. Hyun, H. W. Jeong, Y. T. Lee, J. S. Song, and J. H. Lee,Met. Mater. Int. 13, 151 (2007).CrossRefGoogle Scholar
  17. 17.
    B. D. Cullity,Element of X-Ray Diffraction, p. 96, Addison-Wesley, London (1967).Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • A. M. Omran
    • 1
  • K. D. Woo
    • 1
  • D. K. Kim
    • 1
  • S. W. Kim
    • 1
  • M. S. Moon
    • 2
  • N. A. Barakat
    • 3
  • D. L. Zhang
    • 4
  1. 1.Division of Advanced Materials Engineering, Research Center of Industrial Technology (RCIT)Chonbuk National UniversityJeonbukKorea
  2. 2.Department of Hydrogen and Fuel Cell Engineering, Specialized Graduate SchoolChonbuk National UniversityJeonbukKorea
  3. 3.Department of Textile EngineeringChonbuk National UniversityJeonbukKorea
  4. 4.Department of Materials and Process EngineeringThe University of WaikatoHamiltonNew Zealand

Personalised recommendations