Metals and Materials International

, Volume 14, Issue 1, pp 1–7 | Cite as

Oxidation resistance coatings of Mo−Si−B alloys via a pack cementation process

  • J. S. Park
  • J. M. Kim
  • H. Y. Kim
  • S. Yi
  • J. H. Perepezko


Oxidation behavior of Si pack cementation coatings on a three-phase Mo−Si−B alloy was examined. During Si pack cementation of a three-phase Mo−Si−B alloy, a MoSi2 outer layer was synthesized on the exterior layer. Following oxidation in air of the pack-coated alloys at 1200°C, the MoSi2 phase layer was consumed and replaced by the Mo5Si3 (or T1) phase. The synthesized T1 phase provided excellent oxidation resistance when exposed to high temperatures. The silicide-coated alloys exhibit higher oxidation resistance compared with uncoated Mo−Si−B alloys. The enhanced oxidation behavior and its mechanism are discussed in terms of the thicknesses of the oxide layers under exposure to high temperatures.

Key words

pack cementation oxidation resistance Mo−Si−B alloy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Ito, M. Kumagai, T. Hayashi, and M. Yamaguchi, Scripta mater. 49, 285 (2003).CrossRefGoogle Scholar
  2. 2.
    C. A. Nunes, R. Sakidja, Z. Dong, and J. H. Perepezko, Intermetallics 8, 327 (2000).CrossRefGoogle Scholar
  3. 3.
    R. Sakidja, J. S. Park, J. Hamann, and J. H. Perepezko, Scripta mater. 53, 723 (2005).CrossRefGoogle Scholar
  4. 4.
    J. S. Park, R. Sakidja, and J. H. Perepezko, Scripta materialia 46, 765 (2002).CrossRefGoogle Scholar
  5. 5.
    D. A. Berztiss, R. R. Cerchiara, E. A. Gulbransen, F. S. Pettit, and G. H. Meier, Mater. Sci. Eng. A 155, 165 (1992).CrossRefGoogle Scholar
  6. 6.
    K. Natesan and S. C. Deevi, Intermetallics 8, 1147 (2000).CrossRefGoogle Scholar
  7. 7.
    K. Yoshimi, S. Nakatani, T. Suda, S. Hanada, and H. Habazaki, Intermetallics 10, 407 (2002).CrossRefGoogle Scholar
  8. 8.
    J. H. Perepezko, R. Sakidja, S. Kim, Z. Dong, and J. S. Park, Structural Intermetallics 2001 (ed. K. J. Hemker), p. 505–514, TMS, Pennsylvania (2001).Google Scholar
  9. 9.
    N. P. Bansal, R. H. Doremus, (eds.) Handbook of Glass Properties, Academic Press, Orlando (1986).Google Scholar
  10. 10.
    S. R. Levine and R. Am Caves, J. Electrochem. Soc.: Solid-State Sci. Tech. 121, 1051 (1974).Google Scholar
  11. 11.
    A. Mueller, G. Wang, R. A. Rapp, E. L. Courtright, and T. A. Kircher, Mat. Sci. Eng. A 155, 199 (1992).CrossRefGoogle Scholar
  12. 12.
    P. R. Gage and R. W. Bartlett, Trans. Metall. Soc. AIME 233, 832 (1965).Google Scholar
  13. 13.
    P. C. Totorici and M. A. Dayananda, Scripta materialia 38, 1863 (1998).CrossRefGoogle Scholar
  14. 14.
    P. C. Totorici and M. A. Dayananda, Metall. Mater. Trans. A 38, 545 (1999).CrossRefGoogle Scholar
  15. 15.
    M. K. Meyer, A. J. Thom, and M. Akinc, Intermetallics 7, 153 (1999).CrossRefGoogle Scholar
  16. 16.
    D. M. Berczik, US Patent No. 5, 595, 616/No. 5, 693, 156 (1997).Google Scholar
  17. 17.
    T. A. Kir and E. L. Courtright, Mat. Sci. Eng. A 155, 67 (1992).CrossRefGoogle Scholar
  18. 18.
    X. Fan and T. Ishigaki, J. Am. Ceram. Soc. 82, 1965 (1999).CrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • J. S. Park
    • 1
  • J. M. Kim
    • 1
  • H. Y. Kim
    • 1
  • S. Yi
    • 2
  • J. H. Perepezko
    • 3
  1. 1.Advanced Materials EngineeringHanbat National UniversityDaejeonKorea
  2. 2.Materials Science and Metallurgical EngineeringKyungpook National UniversityDaeguKorea
  3. 3.Materials Science & EngineeringUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations