Electronic Materials Letters

, Volume 6, Issue 4, pp 215–220 | Cite as

Response improvement of integrated humidity sensors using a micropump



An integrated humidity sensor system with micropumps was fabricated, and its pumping capability and response characteristics were investigated. The suitability of valve-less micropumps in the sensor system was demonstrated through a simple micromachining process using deep reactive ion etching (DRIE) and an anodic bonding step. The Reynolds number of the pump with a diffuser angle of 19° is about 1200, and the maximum flow rate is 0.176 μl/min. The optimum resonant frequency is 100 Hz for water and 600∼800 Hz for air. The sensitivity of the humidity sensor system with pumping is 10 times higher than it is without pumping for repeated refresh cycles.


micropump integrated humidity sensor DRIE CMOS response time 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. S. Korotchenkov, S. V. Dmitriev, and V. I. Brynzari, Sensor. Actuat. B-Chem. 54, 202 (1999).CrossRefGoogle Scholar
  2. 2.
    U. Kang and K. Wise, IEEE Trans. Elect. Devices 47, 702 (2000).CrossRefGoogle Scholar
  3. 3.
    Z. M. Rittersma, A. Splinter, A. Bodecker, and W. Beneke, Sensor. Actuat. B-Chem. 68, 210 (2000).CrossRefGoogle Scholar
  4. 4.
    Y. Y. Qiu, C. Azeredo-Leme, L. R. Alcacer, and J. E. Franca, Sensor. Actuat. A-Phys. 92, 80 (2001).CrossRefGoogle Scholar
  5. 5.
    M. Burgmair, M. Zimmer, and I. Eisele, Sensor. Actuat. BChem. 93, 271 (2003).CrossRefGoogle Scholar
  6. 6.
    P. Woias, Sensor. Actuat. B-Chem. 105, 28 (2005).CrossRefGoogle Scholar
  7. 7.
    A. Olsson, P. Enoksson, G. Stemme and E. Stemme, J. Microelectromech. Sys. 6, 161 (1997).CrossRefGoogle Scholar
  8. 8.
    S. P. Lee, Electron. Mater. Lett. 5, 1 (2009).CrossRefGoogle Scholar
  9. 9.
    S. P. Lee, J. G. Lee, and S. Chowdhury, Sensors 8, 2662 (2008).CrossRefGoogle Scholar
  10. 10.
    S. P. Lee, Electron. Mater. Lett. 6, 7 (2010).CrossRefGoogle Scholar
  11. 11.
    V. Singhal, S. V. Garimella, and J. Y. Murthy, Sensor. Actuat. A-Phys. 113, 226 (2004).CrossRefGoogle Scholar
  12. 12.
    C. Yamahata, C. Lotto, E. Al-Assaf, and M. A. M. Gijs, Microfluid. Nanofluid. 1, 197 (2005).CrossRefGoogle Scholar
  13. 13.
    J. Fang, K. Wang, and K. Bohringer, J. Microelectromech. Sys. 15, 871 (2006).CrossRefGoogle Scholar
  14. 14.
    R. Linnemann, P. Woias, C. D. Senfft and J. A. Ditterich, Proc. MEMS ’98, 25–29, 532, Heidelberg, Germany (1998).Google Scholar
  15. 15.
    L. S. Pan. T. Y. Ng, X. H. Wu, and H. P. Lee, J. Micromech. Microeng. 13, 390 (2003).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer 2010

Authors and Affiliations

  1. 1.Department of Electronic EngineeringKyungnam UniversityGyeongnamKorea

Personalised recommendations