Electronic Materials Letters

, Volume 6, Issue 3, pp 117–121

Microstructures and Thermoelectric Properties of Spark Plasma Sintered In4Se3

  • Young Soo Lim
  • Ja Young Cho
  • Jae-Ki Lee
  • Soon-Mok Choi
  • Kyoung Hun Kim
  • Won-Seon Seo
  • Hyung-Ho Park
Article

Abstract

We report microstructures and thermoelectric properties of In4Se3 thermoelectric materials. In4Se3 powder was synthesized by conventional melting process in evacuated quartz ampoules and sintering of In4Se3 was performed by spark plasma method at various sintering temperature. The microstructure and density of the sintered body of In4Se3 were strongly dependent on the sintering temperature. Thermoelectric properties, such as electrical conductivity, Seebeck coefficient and thermal conductivity, were also characterized and the effects of the sintering condition on the thermoelectric properties were investigated.

Keywords:

thermoelectric materials sintering conductivity x-ray diffraction In4Se3 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. -S. Rhyee, K. H. Lee, S. M. Lee, E. Cho, S. I. Kim, E. Lee, Y. S. Kwon, J. H. Shim and G. Kotliar, Nature 459, 965 (2009).CrossRefGoogle Scholar
  2. 2.
    J.-S. Rhyee, E. Cho, K. H. Lee, S. M. Lee, S. I. Kim, H. -S. Kim, Y. S. Kwon, and S. J. Kim, Appl. Phys. Lett. 95, 212106 (2009).CrossRefGoogle Scholar
  3. 3.
    X. Shi, J. Y. Cho, J. R. Salvador, J. Yang, and H. Wang, Appl. Phys. Lett. 96, 162108 (2010).CrossRefGoogle Scholar
  4. 4.
    Y. B. Losovyj, M. Klinke, E. Cai, I. Rodriguez, J. Zhang, L. Makinistian, A. G. Petukhov, E. A. Albanesi, P. Galiy, Y. Fiyala, J. Liu and P. A. Dowben, Appl. Phys. Lett. 92, 122107 (2008).CrossRefGoogle Scholar
  5. 5.
    D. M. Bercha and K. Z. Rushchanski, Phys. Solid State 40, 1906 (1998).CrossRefGoogle Scholar
  6. 6.
    D. M. Bercha, L. Y. Kharkhalis, A. I. Bercha, and M. Sznajder, Phys. Stat. Sol. (b) 203, 427 (1997).CrossRefGoogle Scholar
  7. 7.
    D. M. Bercha, L. Y. Kharkhalis, A. I. Bercha, and M. Sznajder, Semiconductors 31, 1118 (1997).CrossRefGoogle Scholar
  8. 8.
    J.-C. Tedenac, G. P. Vassilev, B. Daouchi, J. Rachidi, and G. Brun, Cryst. Res. Technol. 32, 605 (1997).CrossRefGoogle Scholar
  9. 9.
    C. Chatillon, J. Cryst. Growth 129, 297 (1993).CrossRefGoogle Scholar
  10. 10.
    G. P. Vassilev, B. Daouchi, M. -C. Record, and J. -C. Tedenac, J. Alloys Compd. 269, 107 (1998).CrossRefGoogle Scholar
  11. 11.
    J. H. C. Hogg, H. H. Sutherland, and D. J. Williams, Acta Crystallogr. B 29, 1590 (1973).CrossRefGoogle Scholar
  12. 12.
    L. S. Kukushkin, Zh. Eksp. Teor. Fiz. Pis’ma 7, 194 (1968).Google Scholar
  13. 13.
    E. G. Lavut, N. V. Chelovskaya, E. V. Anokhina, V. N. Denim, and V. P. Zlomanov, J. Chem. Thermodynamics 27, 1337 (1995).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer 2010

Authors and Affiliations

  • Young Soo Lim
    • 1
  • Ja Young Cho
    • 1
    • 2
  • Jae-Ki Lee
    • 1
    • 2
  • Soon-Mok Choi
    • 1
  • Kyoung Hun Kim
    • 1
  • Won-Seon Seo
    • 1
  • Hyung-Ho Park
    • 2
  1. 1.Korea Institute of Ceramic Engineering and TechnologyGreen Ceramics DivisionSeoulKorea
  2. 2.Department of Materials Science and EngineeringYonsei UniversitySeoul

Personalised recommendations