Electronic Materials Letters

, Volume 6, Issue 3, pp 97–101 | Cite as

Mesoscopic fluctuations of electronic structure properties of boron phosphide nanocrystals



The ab initio restricted Hartree-Fock method is used to simulate the electronic structure of relatively large boron phosphide nanocrystals (216–1000 atoms). The calculations are divided into two parts, surface and core. Nanocrystals are found to have smaller lattice constants and higher ionicity as they increase in size. The core calculations show increasing energy gap, cohesive energy, and valence bandwidth as well as highly degenerated states with increasing nanocrystal size. The energy gap, cohesive energy, and valence bandwidth have damping fluctuations as these quantities converge to constant bulk values as the nanocrystal reaches a high number of atoms. These fluctuations are similar to mesoscopic fluctuations that converge to bulk values and are related to the geometry and various surfaces of the core. Unlike the core part, the hydrogenated B-terminated (001)-(1×1) surface of these crystals has a smaller energy gap, and wider valence and conduction bands. Reduced symmetry caused less degenerate states to occur at the surface. Having slightly different lattice constants, both core and shell parts experience stresses to match each other dimensions. On the other hand, unlike the energy gap, the ionization potentials and affinity do not converge to a unique value as the core of nanocrystals increases in size because of the different surfaces that bound these nanocrystals.


nanocrystals abinitio calculations semiconductors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Udagawa, US Patent 7508010 B2 (2009).Google Scholar
  2. 2.
    L. Y. Chen, Y. L. Gu, L. Shi, J. H. Ma, Z. H. Yang, and Y. T. Qian, Chem. Lett. 32, 1188 (2003).CrossRefGoogle Scholar
  3. 3.
    X. Feng, L. Y. Shi, J. Z. Hang, J. P. Zhang, J. H. Fang, and Q. D. X. Zhong, Mater. Lett. 59, 865 (2005).CrossRefGoogle Scholar
  4. 4.
    A. Dobrotvorski and R. Evarestov, Phys. Status Solidi B 66, 83 (1974).CrossRefGoogle Scholar
  5. 5.
    A. Harker and F. Larkins, J. Phys. C 12, 2487 (1979).CrossRefGoogle Scholar
  6. 6.
    M. A. Abdulsattar and K. H. Al-Bayati, Phys. Rev. B 75, 245201 (2007).CrossRefGoogle Scholar
  7. 7.
    M. A. Abdulsattar, Physica E 41, 1679 (2009).CrossRefGoogle Scholar
  8. 8.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03, Revision B.01, Gaussian, Inc.Pittsburgh PA, (2003).Google Scholar
  9. 9.
    C. Kittel, Introduction to Solid State Physics, 5th ed., WileyNew York (1976).Google Scholar
  10. 10.
    R. M. Wentzcovitch, K. J. Chang, and M. L. Cohen, Phys. Rev. B 34, 1071 (1986).CrossRefGoogle Scholar
  11. 11.
    S. Baðci, S. Duman, H. M. Tütüncü, and G. P. Srivastava, Phys. Rev. B 79, 125326 (2009).CrossRefGoogle Scholar
  12. 12.
    P. J. Gielisse, S. S. Mitra, J. N. Plendl, R. D. Griffis, L. C. Mansur, R. Marshall, and E. A. Pascoe, Phys. Rev. 155, 1039 (1967).CrossRefGoogle Scholar
  13. 13.
    J. Karlsson and K. Larsson, J. Phys. Chem. C 114, 3516 (2010).CrossRefGoogle Scholar
  14. 14.
    S. J. Sque, R. Jones, and P. R. Briddon, Phys. Rev. B 73, 085313 (2006).CrossRefGoogle Scholar
  15. 15.
    J. Y. Raty, G. Galli, C. Bostedt, T. W. van Buuren, and L. J. Terminello, Phys. Rev. Lett. 90, 037401 (2003).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer 2010

Authors and Affiliations

  1. 1.Ministry of Science and TechnologyDirectorate of Materials ScienceBaghdadIraq

Personalised recommendations