Skip to main content

Advertisement

Log in

Liver X receptors, nervous system, and lipid metabolism

  • Short Review
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Lipids in the nervous system are represented by cholesterol and phospholipids as constituents of cell membranes and, in particular, of myelin. Therefore, lipids are finely regulated to guarantee physiological functions. In the central nervous system, cholesterol is locally synthesized due to the presence of the blood brain barrier. In the peripheral nervous system cholesterol is either up-taken by lipoproteins and/or produced by de novo biosynthesis. Defects in lipid homeostasis in these tissues lead to structural and functional changes that often result in different pathological conditions depending on the affected pathways (i.e. cholesterol biosynthesis, cholesterol efflux, fatty acid biosynthesis etc.). Alterations in cholesterol metabolism in the central nervous system are linked to several disorders such as Alzheimer’s disease, Huntington disease, Parkinson disease. Multiple sclerosis, Smith-Lemli-Opitz syndrome, Niemann-Pick type C disease, and glioblastoma. In the peripheral nervous system changes in lipid metabolism are associated with the development of peripheral neuropathy that may be caused by metabolic disorders, injuries, therapeutics, and autoimmune diseases. Transcription factors, such as the Liver X receptors (LXR), regulate both cholesterol and fatty acid metabolism in several tissues including the nervous system. In the last few years several studies elucidated the biology of LXR in the nervous system due to the availability of knock-out mice and the development of synthetic ligands. Here, we review a survey of the literature focused on the central and peripheral nervous system and in physiological and pathological settings with particular attention to the roles played by LXR in both districts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Willy PJ, Umesono K, Ong ES, Evans RM, Heyman RA, Mangelsdorf DJ. LXR, a nuclear receptor that defines a distinct retinoid response pathway. Genes Dev 1995, 9: 1033–45.

    Article  CAS  Google Scholar 

  2. Li AC, Glass CK. PPAR- and LXR-dependent pathways controlling lipid metabolism and the development of atherosclerosis. J Lipid Res 2004, 45: 2161–73.

    Article  CAS  Google Scholar 

  3. Gilardi F, Viviani B, Galmozzi A, et al. Expression of sterol 27-hydroxylase in glial cells and its regulation by liver X receptor signaling. Neuroscience 2009, 164: 530–40.

    Article  CAS  Google Scholar 

  4. Nelissen K, Mulder M, Smets I, et al. Liver X receptors regulate cholesterol homeostasis in oligodendrocytes. J Neurosci Res 2012, 90: 60–71.

    Article  CAS  Google Scholar 

  5. Makoukji J, Shackleford G, Meffre D et al. Interplay between LXR and Wnt/β-catenin signaling in the negative regulation of peripheral myelin genes by oxysterols. J Neurosci 2011, 31: 9620–9.

    Article  CAS  Google Scholar 

  6. Uppal H, Saini SP, Moschetta A, et al. Activation of LXRs prevents bile acid toxicity and cholestasis in female mice. Hepatology 2007, 45: 422–32.

    Article  CAS  Google Scholar 

  7. Janowski BA, Willy PJ, Devi TR, Falck JR, Mangelsdorf DJ. An oxysterol signalling pathway mediated by the nuclear receptor LXR alpha. Nature 1996, 383: 728–31.

    Article  CAS  Google Scholar 

  8. Cummins CL, Mangelsdorf DJ. Liver X receptors and cholesterol homoeostasis: spotlight on the adrenal gland. Biochem Soc Trans 2006, 34: 1110–3.

    Article  CAS  Google Scholar 

  9. Beaven SW, Tontonoz P. Nuclear receptors in lipid metabolism: targeting the heart of dyslipidemia. Annu Rev Med 2006, 57: 313–29.

    Article  CAS  Google Scholar 

  10. Repa JJ, Liang G, Ou J et al. Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRalpha and LXRbeta. Genes Dev 2000, 14: 2819–30.

    Article  CAS  PubMed Central  Google Scholar 

  11. Jurevics H, Morell PJ. Cholesterol for synthesis of myelin is made locally, not imported into brain. J Neurochem 1995, 64: 895–901.

    Article  CAS  Google Scholar 

  12. Dietschy JM, Turley SD. Cholesterol metabolism in the brain. Curr Opin Lipidol 2001, 12: 105–12.

    Article  CAS  Google Scholar 

  13. Saher G, Brügger B, Lappe-Siefke C, et al. High cholesterol level is essential for myelin membrane growth. Nat Neurosci 2005, 8: 468–75.

    CAS  Google Scholar 

  14. Lund EG, Xie C, Kotti T, Turley SD, Dietschy JM, Russell DW. Knockout of the cholesterol 24-hydroxylase gene in mice reveals a brain-specific mechanism of cholesterol turnover. J Biol Chem 2003, 278: 22980–8.

    Article  CAS  Google Scholar 

  15. Björkhem I, Lütjohann D, Breuer O, Sakinis A, Wennmalm A. Importance of a novel oxidative mechanism for elimination of brain cholesterol. Turnover of cholesterol and 24(S)-hydroxycholesterol in rat brain as measured with 18O2 techniques in vivo and in vitro. J Biol Chem 1997, 272: 30178–84.

    Article  Google Scholar 

  16. Kotti TJ, Ramirez DM, Pfeiffer BE, Huber KM, Russell DW. Brain cholesterol turnover required for geranylgeraniol production and learning in mice. Proc Natl Acad Sci USA 2006, 103: 3869–74.

    Article  CAS  PubMed Central  Google Scholar 

  17. Fagan AM, Holtzman DM, Munson G, et al. Unique lipoproteins secreted by primary astrocytes from wild type, apoE (-/-), and human apoE transgenic mice. J Biol Chem 1999, 274: 30001–7.

    Article  CAS  Google Scholar 

  18. Masliah E, Mallory M, Ge N, Alford M, Veinbergs I, Roses AD. Neurodegeneration in the central nervous system of apoE-deficient mice. Exp Neurol 1995, 136: 107–22.

    Article  CAS  Google Scholar 

  19. Gordon I, Genis I, Grauer E, Sehayek E, Michaelson DM. Biochemical and cognitive studies of apolipoprotein-E-deficient mice. Mol Chem Neuropathol 1996, 28: 97–103.

    Article  CAS  Google Scholar 

  20. Bojanic DD, Tarr PT, Gale GD, et al. Differential expression and function of ABCG1 and ABCG4 during development and aging. J Lipid Res 2010, 51: 169–81.

    Article  PubMed Central  Google Scholar 

  21. Chen J, Zhang X, Kusumo H, Costa LG, Guizzetti M. Cholesterol efflux is differentially regulated in neurons and astrocytes: implications for brain cholesterol homeostasis. Biochim Biophys Acta 2012, 1831: 263–75.

    Article  PubMed Central  Google Scholar 

  22. Koldamova R, Staufenbiel M, Lefterov I. Lack of ABCA1 considerably decreases brain ApoE level and increases amyloid deposition in APP23 mice. J Biol Chem 2005, 280: 43224–35.

    Article  CAS  Google Scholar 

  23. Tarr PT, Edwards PA. ABCG1 and ABCG4 are coexpressed in neurons and astrocytes of the CNS and regulate cholesterol homeostasis through SREBP-2. J Lipid Res 2008, 49: 169–82.

    Article  CAS  Google Scholar 

  24. Zelcer N, Hong C, Boyadjian R, Tontonoz P. LXR regulates cholesterol uptake through Idol-dependent ubiquitination of the LDL receptor. Science 2009, 325: 100–4.

    Article  CAS  PubMed Central  Google Scholar 

  25. Olsson PA, Korhonen L, Mercer EA, Lindholm D. MIR is a novel ERM-like protein that interacts with myosin regulatory light chain and inhibits neurite outgrowth. J Biol Chem 1999, 274: 36288–92.

    Article  CAS  Google Scholar 

  26. Hong C, Duit S, Jalonen P, et al. The E3 ubiquitin ligase IDOL induces the degradation of the low density lipoprotein receptor family members VLDLR and ApoER2. J Biol Chem 2010, 285: 19720–6.

    Article  CAS  PubMed Central  Google Scholar 

  27. Whitney KD, Watson MA, Collins JL, et al. Regulation of cholesterol homeostasis by the liver X receptors in the central nervous system. Mol Endocrinol 2002, 16: 1378–85.

    Article  CAS  Google Scholar 

  28. Wang L, Schuster GU, Hultenby K, Zhang Q, Andersson S, Gustafsson JA. Liver X receptors in the central nervous system: from lipid homeostasis to neuronal degeneration. Proc Natl Acad Sci U S A 2002, 99: 13878–83.

    Article  CAS  PubMed Central  Google Scholar 

  29. Rebeck GW. Cholesterol efflux as a critical component of Alzheimer’s disease pathogenesis. J Mol Neurosci 2004, 23: 219–24.

    Article  CAS  Google Scholar 

  30. Selkoe DJ. The molecular pathology of Alzheimer’s disease. Neuron 1991, 6: 487–98.

    Article  CAS  Google Scholar 

  31. Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E. Alzheimer’s disease. Lancet 2011, 377: 1019–31.

    Article  Google Scholar 

  32. Zelcer N, Khanlou N, Clare R, et al. Attenuation of neuroinflammation and Alzheimer’s disease pathology by liver x receptors. Proc Natl Acad Sci USA 2007, 104: 10601–6.

    Article  CAS  PubMed Central  Google Scholar 

  33. Cui W, Sun Y, Wang Z, Xu C, Peng Y, Li R. Liver X receptor activation attenuates inflammatory response and protects cholinergic neurons in APP/PS1 transgenic mice. Neuroscience 2012, 210: 200–10.

    Article  CAS  Google Scholar 

  34. Fitz NF, Cronican A, Pham T, et al. Liver X receptor agonist treatment ameliorates amyloid pathology and memory deficits caused by high-fat diet in APP23 mice. J Neurosci 2010, 30: 6862–72.

    Article  CAS  PubMed Central  Google Scholar 

  35. Peri A, Benvenuti S, Luciani P, Deledda C, Cellai I. Membrane cholesterol as a mediator of the neuroprotective effects of estrogens. Neuroscience 2011, 191: 107–17.

    Article  CAS  Google Scholar 

  36. Cecchi C, Rosati F, Pensalfini A, et al. Seladin-1/DHCR24 protects neuroblastoma cells against Abeta toxicity by increasing membrane cholesterol content. J Cell Mol Med 2008, 12: 1990–2002.

    Article  CAS  Google Scholar 

  37. Wang Y, Rogers PM, Stayrook KR, et al. The selective Alzheimer’s disease indicator-1 gene (Seladin-1/DHCR24) is a liver X receptor target gene. Mol Pharmacol 2008, 74: 1716–21.

    Article  CAS  Google Scholar 

  38. Dauer W, Przedborski S. Parkinson’s disease: mechanisms and models. Neuron 2003, 39: 889–909.

    Article  CAS  Google Scholar 

  39. Andersson S, Gustafsson N, Warner M, Gustafsson JA. Inactivation of liver X receptor beta leads to adult-onset motor neuron degeneration in male mice. Proc Natl Acad Sci U S A 2005, 102: 3857–62.

    Article  CAS  PubMed Central  Google Scholar 

  40. Dai YB, Tan XJ, Wu WF, Warner M, Gustafsson JA. Liver X receptor β protects dopaminergic neurons in a mouse model of Parkinson disease. Proc Natl Acad Sci U S A 2012, 109: 13112–7.

    Article  CAS  PubMed Central  Google Scholar 

  41. Valenza M, Rigamonti D, Goffredo D, et al. Dysfunction of the cholesterol biosynthetic pathway in Huntington’s disease. J Neurosci 2005, 25: 9932–9.

    Article  CAS  Google Scholar 

  42. Futter M, Diekmann H, Schoenmakers E, Sadiq O, Chatterjee K, Rubinsztein DC. Wild-type but not mutant huntingtin modulates the transcriptional activity of liver X receptors. J Med Genet 2009, 46: 438–46.

    Article  CAS  PubMed Central  Google Scholar 

  43. Bensinger SJ, Tontonoz P. Integration of metabolism and inflammation by lipid-activated nuclear receptors. Nature 2008, 454: 470–7.

    Article  CAS  Google Scholar 

  44. Cua DJ, Sherlock J, Chen Y, et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 2003, 421: 744–8.

    Article  CAS  Google Scholar 

  45. Korn T, Bettelli E, Gao W et al. IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature 2007, 448: 484–7.

    Article  CAS  PubMed Central  Google Scholar 

  46. Martin R, McFarland HF. Immunological aspects of experimental allergic encephalomyelitis and multiple sclerosis. Crit Rev Clin Lab Sci 1995, 32: 121–82.

    Article  CAS  Google Scholar 

  47. Sospedra M, Martin R. Immunology of multiple sclerosis. Annu Rev Immunol 2005, 23: 683–747.

    Article  CAS  Google Scholar 

  48. Zhang-Gandhi CX, Drew PD. Liver X receptor and retinoid X receptor agonists inhibit inflammatory responses of microglia and astrocytes. J Neuroimmunol 2007, 183: 50–9.

    Article  CAS  PubMed Central  Google Scholar 

  49. Xu J, Wagoner G, Douglas JC, Drew PD. Liver X receptor agonist regulation of Th17 lymphocyte function in autoimmunity. J Leukoc Biol 2009, 86: 401–9.

    Article  CAS  PubMed Central  Google Scholar 

  50. Hindinger C, Hinton DR, Kirwin SJ, et al. Liver X receptor activation decreases the severity of experimental autoimmune encephalomyelitis. J Neurosci Res 2006, 84: 1225–34.

    Article  CAS  Google Scholar 

  51. Cui G, Qin X, Wu L, et al. Liver X receptor (LXR) mediates negative regulation of mouse and human Th17 differentiation. J Clin Invest 2011, 121: 658–70.

    Article  CAS  PubMed Central  Google Scholar 

  52. Mitro N, Vargas L, Romeo R, Koder A, Saez E. T0901317 is a potent PXR ligand: implications for the biology ascribed to LXR. FEBS Lett 2007, 581: 1721–6.

    Article  CAS  Google Scholar 

  53. Pentchev PG, Vanier MT, Suzuki K, Patterson MC. The metabolic and molecular bases of inherited diseases, Niemann-Pick disease type C: a cellular cholesterol lipidosis. In: Scriver CR, Beaudet AL, Sly WS, Valle D, Stanbury JB, Wyngaarden JB, Fredrickson DS (eds). The Metabolic and Molecular Bases of Inherited Disease. 7th ed. New York: McGraw-Hill. 1995, 2625–39.

    Google Scholar 

  54. Repa JJ, Li H, Frank-Cannon TC, et al. Liver X receptor activation enhances cholesterol loss from the brain, decreases neuroinflammation, and increases survival of the NPC1 mouse. J Neurosci 2007, 27: 14470–80.

    Article  CAS  Google Scholar 

  55. Aqul A, Liu B, Ramirez CM et al. Unesterified cholesterol accumulation in late endosomes/lysosomes causes neurodegeneration and is prevented by driving cholesterol export from this compartment. J Neurosci 2011, 31: 9404–13.

    Article  CAS  PubMed Central  Google Scholar 

  56. Sironi L, Mitro N, Cimino M, et al. Treatment with LXR agonists after focal cerebral ischemia prevents brain damage. FEBS Lett 2008, 582: 3396–400.

    Article  CAS  PubMed Central  Google Scholar 

  57. Morales JR, Ballesteros I, Deniz JM, et al. Activation of liver X receptors promotes neuroprotection and reduces brain inflammation in experimental stroke. Circulation 2008, 118: 1450–9.

    Article  CAS  Google Scholar 

  58. Cheng O, Ostrowski RP, Liu W, Zhang JH. Activation of liver X receptor reduces global ischemic brain injury by reduction of nuclear factor-kappaB. Neuroscience 2010, 166: 1101–9.

    Article  CAS  PubMed Central  Google Scholar 

  59. Cutler RG, Pedersen WA, Camandola S, Rothstein JD, Mattson MP. Evidence that accumulation of ceramides and cholesterol esters mediates oxidative stress-induced death of motor neurons in amyotrophic lateral sclerosis. Ann Neurol 2002, 52: 448–57.

    Article  CAS  Google Scholar 

  60. Kim HJ, Fan X, Gabbi C, et al. Liver X receptor beta (LXRbeta): a link between beta-sitosterol and amyotrophic lateral sclerosis-Parkinson’s dementia. Proc Natl Acad Sci USA 2008, 105: 2094–9.

    Article  CAS  PubMed Central  Google Scholar 

  61. Guo D, Reinitz F, Youssef M, et al. An LXR agonist promotes glioblastoma cell death through inhibition of an EGFR/AKT/SREBP-1/LDLR-dependent pathway. Cancer Discov 2011, 1: 442–56.

    Article  CAS  PubMed Central  Google Scholar 

  62. Lindegaard ML, Wassif CA, Vaisman B, et al. Characterization of placental cholesterol transport: ABCA1 is a potential target for in utero therapy of Smith-Lemli-Opitz syndrome. Hum Mol Genet 2008, 17: 3806–13.

    Article  CAS  PubMed Central  Google Scholar 

  63. Melcangi RC, Panzica GC. Neuroactive steroids: old players in a new game. Neuroscience 2006, 138: 733–9.

    Article  CAS  Google Scholar 

  64. Melcangi RC, Garcia-Segura LM, Mensah-Nyagan AG. Neuroactive steroids: state of the art and new perspectives. Cell Mol Life Sci 2008, 65: 777–97.

    Article  CAS  Google Scholar 

  65. Caruso D, Barron AM, Brown MA, et al. Age-related changes in neuroactive steroid levels in 3xTg-AD mice. Neurobiol Aging 2013, 34: 1080–9.

    Article  CAS  PubMed Central  Google Scholar 

  66. Melcangi CR, Garcia-Segura LM. Sex-specific therapeutic strategies based on neuroactive steroids: In search for innovative tools for neuroprotection. Horm Behav 2010, 57: 2–11.

    Article  Google Scholar 

  67. Giatti S, Caruso D, Boraso M, et al. Neuroprotective effects of progesterone in chronic experimental autoimmune encephalomyelitis. J Neuroendocrinol 2012, 24: 851–61.

    Article  CAS  Google Scholar 

  68. Caruso D, Scurati S, Roglio I, Nobbio L, Schenone A, Melcangi RC. Neuroactive Steroid Levels in a transgenic rat model of CMT1A Neuropathy. J Mol Neurosci 2008, 34: 249–53.

    Article  CAS  Google Scholar 

  69. Melcangi RC, Panzica G, Garcia-Segura LM. Neuroactive steroids: focus on human brain. Neuroscience 2011, 191: 1–5.

    Article  CAS  Google Scholar 

  70. Mitro N, Cermenati G, Giatti S, et al. LXR and TSPO as new therapeutic targets to increase the levels of neuroactive steroids in the central nervous system of diabetic animals. Neurochem Int 2012, 60: 616–21.

    Article  CAS  Google Scholar 

  71. Obici S. Minireview: molecular targets for obesity therapy in the brain. Endocrinology 2009, 150: 2512–7.

    Article  CAS  Google Scholar 

  72. Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW. Central nervous system control of food intake and body weight. Nature 2006, 443: 289–95.

    Article  CAS  Google Scholar 

  73. Thaler JP, Yi CX, Schur EA, et al. Obesity is associated with hypothalamic injury in rodents and humans. J Clin Invest 2012, 122: 153–62.

    Article  CAS  PubMed Central  Google Scholar 

  74. Frisardi V, Solfrizzi V, Seripa D et al. Metabolic-cognitive syndrome: a cross-talk between metabolic syndrome and Alzheimer’s disease. Ageing Res Rev 2010, 9: 399–417.

    Article  Google Scholar 

  75. Kruse MS, Rey M, Vega MC, Coirini H. Alterations of LXRα and LXRβ expression in the hypothalamus of glucose-intolerant rats. J Endocrinol 2012, 215: 51–8.

    Article  CAS  Google Scholar 

  76. Gabbi C, Kong X, Suzuki H, et al. Central diabetes insipidus associated with impaired renal aquaporin-1 expression in mice lacking liver X receptor β. Proc Natl Acad Sci U S A 2012, 109: 3030–4.

    Article  CAS  PubMed Central  Google Scholar 

  77. Laffitte BA, Chao LC, Li J et al. Activation of liver X receptor improves glucose tolerance through coordinate regulation of glucose metabolism in liver and adipose tissue. Proc Natl Acad Sci U S A 2003, 100: 5419–24.

    Article  CAS  PubMed Central  Google Scholar 

  78. Zitzer H, Wente W, Brenner MB, et al. Sterol regulatory element-binding protein 1 mediates liver X receptor-beta-induced increases in insulin secretion and insulin messenger ribonucleic acid levels. Endocrinology 2006, 147: 3898–905.

    Article  CAS  Google Scholar 

  79. Gerin I, Dolinsky VW, Shackman JG, et al. LXRbeta is required for adipocyte growth, glucose homeostasis, and beta cell function. J Biol Chem 2005, 280: 23024–31.

    Article  CAS  Google Scholar 

  80. Efanov AM, Sewing S, Bokvist K, Gromada J. Liver X receptor activation stimulates insulin secretion via modulation of glucose and lipid metabolism in pancreatic beta-cells. Diabetes 2004, 53(Suppl 3): S75–8.

    Article  CAS  Google Scholar 

  81. Grefhorst A, van Dijk TH, Hammer A, et al. Differential effects of pharmacological liver X receptor activation on hepatic and peripheral insulin sensitivity in lean and ob/ob mice. Am J Physiol Endocrinol Metab 2005, 289: E829–38.

    Article  CAS  Google Scholar 

  82. Loffler M, Bilban M, Reimers M, Waldhäusl W, Stulnig TM. Blood glucose-lowering nuclear rceptor agonists only partially normalize hepatic gene expression in db/db mice. J Pharmacol Exp Ther 2006, 316: 797–804.

    Article  CAS  Google Scholar 

  83. Cao G, Liang Y, Broderick CL, et al. Antidiabetic action of a liver x receptor agonist mediated by inhibition of hepatic gluconeogenesis. J Biol Chem 2003, 278: 1131–6.

    Article  CAS  Google Scholar 

  84. Liu Y, Yan C, Wang Y, et al. Liver X receptor agonist T0901317 inhibition of glucocorticoid receptor expression in hepatocytes may contribute to the amelioration of diabetic syndrome in db/db mice. Endocrinology 2006, 147: 5061–8.

    Article  CAS  Google Scholar 

  85. Commerford SR, Vargas L, Dorfman SE, et al. Dissection of the insulin-sensitizing effect of liver X receptor ligands. Mol Endocrinol 2007, 21: 3002–12.

    Article  CAS  Google Scholar 

  86. Choe SS, Choi AH, Lee JW, et al. Chronic activation of liver X receptor induces beta-cell apoptosis through hyperactivation of lipogenesis: liver X receptor-mediated lipotoxicity in pancreatic beta-cells. Diabetes 2007, 56: 1534–43.

    Article  CAS  Google Scholar 

  87. Chisholm JW, Hong J, Mills SA, Lawn RM. The LXR ligand T0901317 induces severe lipogenesis in the db/db diabetic mouse. J Lipid Res 2003, 44: 2039–48.

    Article  CAS  Google Scholar 

  88. Friedman JM. Obesity in the new millennium. Nature 2000, 404: 632–4.

    CAS  Google Scholar 

  89. Stulnig TM, Steffensen KR, Gao H, et al. Novel roles of liver X receptors exposed by gene expression profiling in liver and adipose tissue. Mol Pharmacol 2002, 62: 1299–305.

    Article  CAS  Google Scholar 

  90. Verheijen MH, Camargo N, Verdier V, et al. SCAP is required for timely and proper myelin membrane synthesis. Proc Natl Acad Sci U S A 2009, 106: 21383–8.

    Article  CAS  PubMed Central  Google Scholar 

  91. Cermenati G, Giatti S, Cavaletti G, et al. Activation of the liver X receptor increases neuroactive steroid levels and protects from diabetes-induced peripheral neuropathy. J Neurosci 2010, 30: 11896–901.

    Article  CAS  PubMed Central  Google Scholar 

  92. Giatti S, Pesaresi M, Cavaletti G, et al. Neuroprotective effects of a ligand of translocator protein-18 kDa (Ro5-4864) in experimental diabetic neuropathy. Neuroscience 2009, 164: 520–9.

    Article  CAS  Google Scholar 

  93. Cermenati G, Abbiati F, Cermenati S et al. Diabetes-induced myelin abnormalities are associated with an altered lipid pattern: protective effects of LXR activation. J Lipid Res 2012, 53: 300–10.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Caruso PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cermenati, G., Brioschi, E., Abbiati, F. et al. Liver X receptors, nervous system, and lipid metabolism. J Endocrinol Invest 36, 435–443 (2013). https://doi.org/10.3275/8941

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3275/8941

Key-words

Navigation