Skip to main content

Advertisement

Log in

Caveolin-1 and polymerase I and transcript release factor: New players in insulin-like growth factor-I receptor signaling

  • Review Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Caveolae are plasma membrane regions enriched in Caveolin proteins which regulate vesicular transport, endocytosis, and cell signaling. IGF-I receptor (IGF-IR) localizes in caveolae and tyrosine phosphorylates Caveolin-1 (Cav-1), the most represented caveolar protein. Cav-1 participates to IGF-IR internalization and signaling directly interacting with IGF-IR and its substrates. Recently, polymerase I and transcript release factor (PTRF) or Cavin-1, has been identified in the caveolar backbone. PTRF does not play a Cav-1 ancillary role and emerging data support a direct role of PTRF in IGF-IR signaling. PTRF and Cav-1 can bind IGF-IR and regulate IGF-IR internalization and plasma membrane replacement, mechanisms frequently deregulated in cancer cells. Although the exact roles of Cav-1 and IGF-IR in human cancer continue to be a matter of some debate, there is a strong evidence for an association between Cav-1 and IGF-IR in cancer development. With the discovery of IGF-IR interaction with PTRF in caveolae, new insight emerged to understand the growing functions of these domains in IGF-I action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bastiani M, Parton RG. Caveolae at a glance. J Cell Sci 2010, 123: 3831–6.

    Article  PubMed  Google Scholar 

  2. Razani B, Wang XB, Engelman JA, et al. Caveolin-2-deficient mice show evidence of severe pulmonary dysfunction without disruption of caveolae. Mol Cell Biol 2002, 22: 2329–44.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Parolini I, Sargiacomo M, Galbiati F, et al. Expression of caveolin-1 is required for the transport of caveolin-2 to the plasma membrane: retention of caveolin-2 at the level of the Golgi complex. J Biol Chem 1999, 274: 25718–25.

    Article  PubMed  Google Scholar 

  4. Drab M, Verkade P, Elger M, et al. Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 2001, 293: 2449–52.

    Article  PubMed  Google Scholar 

  5. Galbiati F, Engelman JA, Volonte D, et al. Caveolin-3 null mice show a loss of caveolae, changes in the microdomain distribution of the dystrophin-glycoprotein complex, and t-tubule abnormalities. J Biol Chem 2001, 276: 21425–33.

    Article  PubMed  Google Scholar 

  6. Liu P, Rudick M, Anderson RG. Multiple functions of caveolin-1. J Biol Chem 2002, 277: 41295–8.

    Article  PubMed  Google Scholar 

  7. Couet J, Li S, Okamoto T, Ikezu T, Lisanti MP. Identification of peptide and protein ligands for the caveolin-scaffolding domain. Implications for the interaction of caveolin with caveolae-associated proteins. J Biol Chem 1997, 272: 6525–33.

    Article  PubMed  Google Scholar 

  8. Carver LA, Schnitzer JE. Caveolae: mining little caves for new cancer targets. Nat Rev Cancer 2003, 3: 571–81.

    Article  PubMed  Google Scholar 

  9. Aboulaich N, Vainonen JP, Stralfors P, Vener AV. Vectorial proteomics reveal targeting, phosphorylation and specific fragmentation of polymerase I and transcript release factor (PTRF) at the surface of caveolae in human adipocytes. Biochem J 2004, 383: 237–48.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Briand N, Dugail I, Le Lay S. Cavin proteins: New players in the caveolae field. Biochimie 2011, 93: 71–7.

    Article  PubMed  Google Scholar 

  11. Jansa P, Mason SW, Hoffmann-Rohrer U, Grummt I. Cloning and functional characterization of PTRF, a novel protein which induces dissociation of paused ternary transcription complexes. Embo J 1998, 17: 2855–64.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Aboulaich N, Örtegren U, Vener AV, Strålfors P. Association and insulin regulated translocation of hormone-sensitive lipase with PTRF. Biochem Biophys Res Commun 2006, 350: 657–61.

    Article  PubMed  Google Scholar 

  13. Hill MM, Bastiani M, Luetterforst R, et al. PTRF-cavin, a conserved cytoplasmic protein required for caveola formation and function. Cell 2008, 132: 113–24.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Liu L, Pilch PF. A critical role of cavin (polymerase I and transcript release factor) in caveolae formation and organization. J Biol Chem 2008, 283: 4314–22.

    Article  PubMed  Google Scholar 

  15. Bai L, Deng X, Li J, et al. Regulation of cellular senescence by the essential caveolar component PTRF/Cavin-1. Cell Res 2011, 21: 1088–101.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Hayer A, Stoeber M, Bissig C, Helenius A. Biogenesis of caveolae: stepwise assembly of large caveolin and cavin complexes. Traffic 2010, 11: 361–82.

    Article  PubMed  Google Scholar 

  17. Lee H, Volonte D, Galbiati F, et al. Constitutive and growth factorregulated phosphorylation of caveolin1 occurs at the same site (Tyr14) in vivo: identification of a cSrc/Cav1/Grb7 signaling cassette. Mol Endocrinol 2000, 14: 1750–75.

    Article  PubMed  Google Scholar 

  18. Panetta D, Biedi C, Repetto S, Cordera R, Maggi D. IGF-I regulates caveolin 1 and IRS1 interaction in caveolae. Biochem Biophys Res Commun 2004, 316: 240–3.

    Article  PubMed  Google Scholar 

  19. Biedi C, Panetta D, Segat D, Cordera R, Maggi D. Specificity of insulin-like growth factor I and insulin on Shc phosphorylation and Grb2 recruitment in caveolae. Endocrinology 2003, 144: 5497–503.

    Article  PubMed  Google Scholar 

  20. Schlegel A, Arvan P, Lisanti MP. Caveolin-1 binding to endoplasmic reticulum membranes and entry into the regulated secretory pathway are regulated by serine phosphorylation: protein sorting at the level of the endoplasmic reticulum. J Biol Chem 2001, 276: 4398–408.

    Article  PubMed  Google Scholar 

  21. Aboulaich N, Chui PC, Asara JM, Flier JS, Maratos-Flier E. Polymerase I and transcript release factor regulates lipolysis via a phosphorylation-dependent mechanism. Diabetes 2011, 60: 757–65.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Jansa P, Burek C, Sander EE, Grummt I. The transcript release factor PTRF augments ribosomal gene transcription by facilitating reinitiation of RNA polymerase I. Nucleic Acids Res 2001, 29: 423–9.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Schmelzle K, Kane S, Gridley S, Lienhard GE, White FM. Temporal dynamics of tyrosine phosphorylation in insulin signaling. Diabetes 2006, 55: 2171–9.

    Article  PubMed  Google Scholar 

  24. Pollak M. The insulin and insulin-like growth factor receptor family in neoplasia: an update. Nat Rev Cancer 2012, 12: 159–69.

    PubMed  Google Scholar 

  25. Samani AA, Yakar S, LeRoith D, Brodt P. The role of the IGF system in cancer growth and metastasis: overview and recent insights. Endocr Rev 2007, 28: 20–47.

    Article  PubMed  Google Scholar 

  26. Maggi D, Biedi C, Segat D, Barbero D, Panetta D, Cordera R. IGF-I induces caveolin 1 tyrosine phosphorylation and translocation in the lipid rafts Biochem Biophys Res Commun 2002, 295: 1085–9.

    Article  PubMed  Google Scholar 

  27. Simons K, Ikonen E. Functional rafts in cell membranes. Nature 1997, 387: 569–72.

    Article  PubMed  Google Scholar 

  28. Chen J, Capozza F, Wu A, et al. Regulation of insulin receptor sub-strate-1 expression levels by caveolin-1. J Cell Physiol 2008, 217: 281–9.

    Article  PubMed  Google Scholar 

  29. Salani B, Passalacqua M, Maffioli S, et al. IGF-IR internalizes with caveolin-1 and PTRF/cavin in HaCat cells PLoS One 2010, 5: e14157.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Brodt P, Fallavollita L, Khatib AM, Samani AA, Zhang D. Cooperative regulation of the invasive and metastatic phenotypes by different domains of the type I insulin-like growth factor receptor β subunit. J Biol Chem 2001, 276: 33608–15.

    Article  PubMed  Google Scholar 

  31. Brazil DP, Yang ZZ, Hemmings BA. Advances in protein kinase B signalling: AKTion on multiple fronts. Trends Biochem Sci 2004, 29: 233–42.

    Article  PubMed  Google Scholar 

  32. Hanada M, Feng J, Hemmings BA. Structure, regulation and function of PKB/AKTa major therapeutic target. Biochim Biophys Acta 2004, 1697: 3–16.

    Article  PubMed  Google Scholar 

  33. Navarro M, Baserga R. Limited redundancy of survival signals from the type 1 insulin-like growth factor receptor Endocrinology 2001, 142: 1073–81.

    PubMed  Google Scholar 

  34. Podar K, Tai YT, Cole CE, et al. Essential role of caveolae in interleukin-6- and insulin-like growth factor i-triggered Akt-1-mediated survival of multiple myeloma cells. J Biol Chem 2003, 278: 5794–801.

    Article  PubMed  Google Scholar 

  35. Salani B, Briatore L, Garibaldi S, Cordera R, Maggi D. Caveolin-1 down-regulation inhibits insulin-like growth factor-i receptor signal transduction in H9C2 rat cardiomyoblasts. Endocrinology 2008, 149: 461–5.

    Article  PubMed  Google Scholar 

  36. Huang H, Tindall DJ. Dynamic FoxO transcription factors. J Cell Sci 2007, 120: 2479–87.

    Article  PubMed  Google Scholar 

  37. Brunet A, Bonni A, Zigmond MJ, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999, 96: 857–68.

    Article  PubMed  Google Scholar 

  38. Yang JY, Hung MC. A new fork for clinical application: targeting forkhead transcription factors in cancer. Clin Cancer Res 2009, 15: 752–7.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Di Fiore PP, De Camilli P. Endocytosis and signaling. An inseparable partnership. Cell 2001, 106: 1–4.

    Article  PubMed  Google Scholar 

  40. Zapf A, Hsu D, Olefsky JM. Comparison of the intracellular itineraries of insulin-like growth factor-I and insulin and their receptors in Rat-1 fibroblasts. Endocrinology 1994, 134: 2445–52.

    PubMed  Google Scholar 

  41. Monami G, Emiliozzi V, Morrione A. Grb10/Nedd4-mediated multiubiquitination of the insulin-like growth factor receptor regulates receptor internalization. J Cell Physiol 2008, 216: 426–37.

    Article  PubMed  Google Scholar 

  42. Sehat B, Andersson S, Girnita L, Larsson O. Identification of c-Cbl as a new ligase for insulin-like growth factor-I receptor with distinct roles from Mdm2 in receptor ubiquitination and endocytosis. Cancer Res 2008, 68: 5669–77.

    Article  PubMed  Google Scholar 

  43. Martins AS, Ordonez JL, Amaral AT, et al. IGF1 R signaling in Ewing sarcoma is shaped by clathrin/caveolin-dependent endocytosis. PLoS One 2011, 6: e19846.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Tai YT, Podar K, Catley L, et al. Insulin-like growth factor-1 induces adhesion and migration in human multiple myeloma cells via activation of β1-integrin and phosphatidylinositol 3′-kinase/AKT signaling. Cancer Res 2003, 63: 5850–8.

    PubMed  Google Scholar 

  45. Salani B, Briatore L, Contini P, et al. IGF-I induced rapid recruitment of integrin β1 to lipid rafts is Caveolin-1 dependent. Biochem Biophys Res Commun 2009, 380: 489–92.

    Article  PubMed  Google Scholar 

  46. Echarri A, Del Pozo MA. Caveolae internalization regulates integrin-dependent signaling pathways. Cell Cycle 2006, 5: 2179–82.

    Article  PubMed  Google Scholar 

  47. Sell C, Rubini M, Rubin R, Liu JP, Efstratiadis A, Baserga R. Simian virus 40 large tumor antigen is unable to transform mouse embryonic fibroblasts lacking type 1 insulin-like growth factor receptor. Proc Natl Acad Sci U S A 1993, 90: 11217–21.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Surmacz E, Guvakova MA, Nolan MK, Nicosia RF, Sciacca L. Type I insulinlike growth factor receptor function in breast cancer. Breast Cancer Res Treat 1998, 47: 255–67.

    Article  PubMed  Google Scholar 

  49. Razani B, Schlegel A, Liu J, Lisanti MP. Caveolin-I, a putative tumour suppressor gene Biochem Soc Trans 2001, 29: 494–9.

    Article  PubMed  Google Scholar 

  50. Sagara Y, Mimori K, Yoshinaga K, et al. Clinical significance of Caveolin-1, Caveolin-2 and HER2/neu mRNA expression in human breast cancer. Br J Cancer 2004, 91: 959–65.

    PubMed Central  PubMed  Google Scholar 

  51. Racine C, Belanger M, Hirabayashi H, Boucher M, Chakir J, Couet J. Reduction of caveolin 1 gene expression in lung carcinoma cell lines. Biochem Biophys Res Commun 1999, 255: 580–6.

    Article  PubMed  Google Scholar 

  52. Wiechen K, Diatchenko L, Agoulnik A, et al. Caveolin-1 is down-regulated in human ovarian carcinoma and acts as a candidate tumor suppressor gene. Am J Pathol 2001, 159: 1635–43.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Savage K, Lambros MB, Robertson D, et al. Caveolin 1 is overexpressed and amplified in a subset of basal-like and metaplastic breast carcinomas: a morphologic, ultrastructural, immunohistochemical, and in situ hybridization analysis. Clin Cancer Res 2007, 13: 90–101.

    Article  PubMed  Google Scholar 

  54. Li L, Yang G, Ebara S, et al. Caveolin-1 mediates testosterone-stimulated survival/clonal growth and promotes metastatic activities in prostate cancer cells. Cancer Res 2001, 61: 4386–92.

    PubMed  Google Scholar 

  55. Ho CC, Huang PH, Huang HY, Chen YH, Yang PC, Hsu SM. Up-regulated caveolin-1 accentuates the metastasis capability of lung adenocarcinoma by inducing filopodia formation. Am J Pathol 2002, 161: 1647–56.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Cui J, Rohr LR, Swanson G, Speights VO, Maxwell T, Brothman AR. Hypermethylation of the caveolin-1 gene promoter in prostate cancer. Prostate 2001, 46: 249–56.

    Article  PubMed  Google Scholar 

  57. Sunaga N, Miyajima K, Suzuki M, et al. Different roles for caveolin-1 in the development of non-small cell lung cancer versus small cell lung cancer. Cancer Res 2004, 64: 4277–85.

    Article  PubMed  Google Scholar 

  58. Li T, Sotgia F, Vuolo MA, et al. Caveolin-1 mutations in human breast cancer: functional association with estrogen receptor α-positive status. Am J Pathol 2006, 168: 1998–2013.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Baserga R, Peruzzi F, Reiss K. The IGF-1 receptor in cancer biology. Int J Cancer 2003, 107: 873–7.

    Article  PubMed  Google Scholar 

  60. Glait C, Tencer L, Ravid D, Sarfstein R, Liscovitch M, Werner H. Caveolin-1 up-regulates IGF-I receptor gene transcription in breast cancer cells via Sp1- and p53-dependent pathways Exp Cell Res 2006, 312: 3899–908.

    Article  PubMed  Google Scholar 

  61. Matthews LC, Taggart MJ, Westwood M. Modulation of caveolin-1 expression can affect signalling through the phosphatidylinositol 3-kinase/Akt pathway and cellular proliferation in response to insulin-like growth factor I. Endocrinology 2008, 149: 5199–208.

    Article  PubMed  Google Scholar 

  62. Salani B, Maffioli S, Hamoudane M, et al. Caveolin-1 is essential for metformin inhibitory effect on IGF1 action in non-small-cell lung cancer cells. Faseb J 2011, 26: 788–98.

    Article  PubMed  Google Scholar 

  63. Aung CS, Hill MM, Bastiani M, Parton RG, Parat MO. PTRF-cavin-1 expression decreases the migration of PC3 prostate cancer cells: role of matrix metalloprotease 9. Eur J Cell Biol 2011, 90: 136–42.

    Article  PubMed  Google Scholar 

  64. Gould ML, Williams G, Nicholson HD. Changes in caveolae, caveolin, and polymerase 1 and transcript release factor (PTRF) expression in prostate cancer progression. Prostate 2010, 70: 1609–21.

    Article  PubMed  Google Scholar 

  65. Zou H, Stoppani E, Volonte D, Galbiati F. Caveolin-1, cellular senescence and age-related diseases. Mech Ageing Dev 2011, 132: 533–42.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Fontana L, Partridge L, Longo VD. Extending healthy life span— from yeast to humans. Science 2010, 328: 321–6.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Vitale G, Brugts MP, Ogliari G, et al. Low circulating IGF-I bioactivity is associated with human longevity: findings in centenarians’ offspring. Aging (Albany NY) 2012, 4: 580–9.

    Google Scholar 

  68. Guha U, Chaerkady R, Marimuthu A, et al. Comparisons of tyrosine phosphorylated proteins in cells expressing lung cancer-specific alleles of EGFR and KRAS. Proc Natl Acad Sci U S A 2008, 105: 14112–7.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Maggi MD, PhD.

Additional information

M.H. and S. Maffioli contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamoudane, M., Maffioli, S., Cordera, R. et al. Caveolin-1 and polymerase I and transcript release factor: New players in insulin-like growth factor-I receptor signaling. J Endocrinol Invest 36, 204–208 (2013). https://doi.org/10.3275/8848

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3275/8848

Key-words

Navigation