Skip to main content
Log in

Genetic defects of hydrogen peroxide generation in the thyroid gland

  • Short Review
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Hydrogen peroxide (H2O2) is a key element in thyroid hormone biosynthesis. It is the substrate used by thyroid peroxidase for oxidation and incorporation of iodine into thyroglobulin, a process known as organification. The main enzymes composing the H2O2-generating system are the dual oxidase 2 (DUOX2) and the recently described DUOX maturation factor 2 (DUOXA2). Defects in these reactions lead to reduced thyroid hormone synthesis and hypothyroidism, with consequent increased TSH secretion and goiter. Since the first report in 2002 of DUOX2 mutations causing congenital hypothryoidism (CH), to date 25 different mutations have been described. Affected patients show a positive perchlorate discharge test and high phenotypic variability, ranging from transient to permanent forms of CH. Up to now, only two cases of CH due to DUOXA2 defects have been published. They also suggest the existence of a great genotype-phenotype variability. The phenotypic expression is probably influenced by genetic background and environmental factors. DUOX and DUOXA constitute a redundant system in which DUOX1/DUOXA1 can at least partially replace the function of DUOX2/DUOXA2. Furthermore, increased nutritional iodide could ensure a better use of H2O2 provided by DUOX1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Corbetta C, Weber G, Cortinovis F, et al. A 7-year experience with low blood TSH cutoff levels for neonatal screening reveals an unsuspected frequency of congenital hypothyroidism (CH). Clin Endocrinol (Oxf) 2009, 71: 739–45.

    Article  Google Scholar 

  2. Harris KB, Pass KA. Increase in congenital hypothyroidism in New York State and in the United States. Mol Genet Metab 2007, 91: 268–77.

    Article  PubMed  Google Scholar 

  3. Mengreli C, Kanaka-Gantenbein C, Girginoudis P, et al. Screening for congenital hypothyroidism: the significance of threshold limit in false-negative results. J Clin Endocrinol Metab 2010, 95: 4283–90.

    Article  PubMed  Google Scholar 

  4. Pearce MS, Korada M, Day J, et al. Increasing Incidence, but Lack of Seasonality, of Elevated TSH Levels, on Newborn Screening, in the North of England. J Thyroid Res 2010, 2010: 101948.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Park SM, Chatterjee VK. Genetics of congenital hypothyroidism. J Med Genet 2005, 42: 379–89.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Grasberger H, Refetoff S. Genetic causes of congenital hypothyroidism due to dyshormonogenesis. Curr Opin Pediatr 2011, 23: 421–8.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Persani L, Calebiro D, Cordella D, et al. Genetics and phenomics of hypothyroidism due to TSH resistance. Mol Cell Endocrinol 2010, 322: 72–82.

    Article  PubMed  Google Scholar 

  8. Moreno JC, Bikker H, Kempers MJ, et al. Inactivating mutations in the gene for thyroid oxidase 2 (THOX2) and congenital hypothyroidism. N Engl J Med 2002, 347: 95–102.

    Article  PubMed  Google Scholar 

  9. Zamproni I, Grasberger H, Cortinovis F, et al. Biallelic inactivation of the dual oxidase maturation factor 2 (DUOXA2) gene as a novel cause of congenital hypothyroidism. J Clin Endocrinol Metab 2008, 93: 605–10.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Moreno JC. Identification of novel genes involved in congenital hypothyroidism using serial analysis of gene expression. Horm Res 2003, 60(Suppl 3): 96–102.

    Article  PubMed  Google Scholar 

  11. Gillam MP, Kopp P. Genetic defects in thyroid hormone synthesis. Curr Opin Pediatr 2001, 13: 364–72.

    Article  PubMed  Google Scholar 

  12. Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 2007, 87: 245–313.

    Article  PubMed  Google Scholar 

  13. Quinn MT, Ammons MC, Deleo FR. The expanding role of NADPH oxidases in health and disease: no longer just agents of death and destruction. Clin Sci (Lond) 2006, 111: 1–20.

    Article  Google Scholar 

  14. Riou C, Remy C, Rabilloud R, Rousset B, Fonlupt P. H2O2 induces apoptosis of pig thyrocytes in culture. J Endocrinol 1998, 156: 315–22.

    Article  PubMed  Google Scholar 

  15. Maier J, van Steeg H, van Oostrom C, Karger S, Paschke R, Krohn K. Deoxyribonucleic acid damage and spontaneous mutagenesis in the thyroid gland of rats and mice. Endocrinology 2006, 147: 3391–7.

    Article  PubMed  Google Scholar 

  16. Song Y, Driessens N, Costa M, et al. Roles of hydrogen peroxide in thyroid physiology and disease. J Clin Endocrinol Metab 2007, 92: 3764–73.

    Article  PubMed  Google Scholar 

  17. Köhrle J, Jakob F, Contempré B, Dumont JE. Selenium, the thyroid, and the endocrine system. Endocr Rev 2005, 26: 944–84.

    Article  PubMed  Google Scholar 

  18. Björkman U, Ekholm R. Generation of H2O2 in isolated porcine thyroid follicles. Endocrinology 1984, 115: 392–8.

    Article  PubMed  Google Scholar 

  19. Dupuy C, Ohayon R, Valent A, Noël-Hudson MS, Dème D, Virion A. Purification of a novel flavoprotein involved in the thyroid NADPH oxidase. Cloning of the porcine and human cdnas. J Biol Chem 1999, 274: 37265–9.

    Article  PubMed  Google Scholar 

  20. De Deken X, Wang D, Many MC, et al. Cloning of two human thyroid cDNAs encoding new members of the NADPH oxidase family. J Biol Chem 2000, 275: 23227–33.

    Article  PubMed  Google Scholar 

  21. Pachucki J, Wang D, Christophe D, Miot F. Structural and functional characterization of the two human ThOX/Duox genes and their 5’-flanking regions. Mol Cell Endocrinol 2004, 214: 53–62.

    Article  PubMed  Google Scholar 

  22. Ameziane-El-Hassani R, Morand S, Boucher JL, et al. Dual oxidase-2 has an intrinsic Ca2+-dependent H2O2-generating activity. J Biol Chem 2005, 280: 30046–54.

    Article  PubMed  Google Scholar 

  23. Rigutto S, Hoste C, Grasberger H, et al. Activation of dual oxidases Duox1 and Duox2: differential regulation mediated by camp-dependent protein kinase and protein kinase C-dependent phos-phorylation. J Biol Chem 2009, 284: 6725–34.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Grasberger H, Refetoff S. Identification of the maturation factor for dual oxidase. Evolution of an eukaryotic operon equivalent. J Biol Chem 2006, 281: 18269–72.

    Article  PubMed  Google Scholar 

  25. Grasberger H, De Deken X, Miot F, Pohlenz J, Refetoff S. Missense mutations of dual oxidase 2 (DUOX2) implicated in congenital hypothyroidism have impaired trafficking in cells reconstituted with DUOX2 maturation factor. Mol Endocrinol 2007, 21: 1408–21.

    Article  PubMed  Google Scholar 

  26. Edens WA, Sharling L, Cheng G, et al. Tyrosine cross-linking of extracellular matrix is catalyzed by Duox, a multidomain oxidase/peroxidase with homology to the phagocyte oxidase subunit gp91 phox. J Cell Biol 2001, 154: 879–91.

    Article  PubMed Central  PubMed  Google Scholar 

  27. El Hassani RA, Benfares N, Caillou B, et al. Dual oxidase2 is expressed all along the digestive tract. Am J Physiol Gastrointest Liver Physiol 2005, 288: G933–42.

    Article  PubMed  Google Scholar 

  28. Geiszt M, Witta J, Baffi J, Lekstrom K, Leto TL. Dual oxidases represent novel hydrogen peroxide sources supporting mucosal surface host defense. FASEB J 2003, 17: 1502–4.

    PubMed  Google Scholar 

  29. Forteza R, Salathe M, Miot F, Forteza R, Conner GE. Regulated hydrogen peroxide production by Duox in human airway epithelial cells. Am J Respir Cell Mol Biol 2005, 32: 462–9.

    Article  PubMed  Google Scholar 

  30. Schwarzer C, Machen TE, Illek B, Fischer H. NADPH oxidase-dependent acid production in airway epithelial cells. J Biol Chem 2004, 279: 36454–61.

    Article  PubMed  Google Scholar 

  31. Ha EM, Oh CT, Bae YS, Lee WJ. A direct role for dual oxidase in Drosophila gut immunity. Science 2005, 310: 847–50.

    Article  PubMed  Google Scholar 

  32. Luxen S, Belinsky SA, Knaus UG. Silencing of DUOX NADPH oxidases by promoter hypermethylation in lung cancer. Cancer Res 2008, 68: 1037–45.

    Article  PubMed  Google Scholar 

  33. Grasberger H, De Deken X, Barca Mayo O, et al. Mice deficient in dual oxidase maturation factors are severely hypothyroid. Mol Endocrinol 2012, 26: 481–92.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Vigone MC, Fugazzola L, Zamproni I, et al. Persistent mild hypothyroidism associated with novel sequence variants of the DUOX2 gene in two siblings. Hum Mutat 2005, 26: 395.

    Article  PubMed  Google Scholar 

  35. Varela V, Rivolta CM, Esperante SA, Gruñeiro-Papendieck L, Chiesa A, Targovnik HM. Three mutations (p.Q36H, p.G418fsX482, and g.IVS19-2A>C) in the dual oxidase 2 gene responsible for congenital goiter and iodide organification defect. Clin Chem 2006, 52: 182–91.

    Article  PubMed  Google Scholar 

  36. Pfarr N, Korsch E, Kaspers S, et al. Congenital hypothyroidism caused by new mutations in the thyroid oxidase 2 (THOX2) gene. Clin Endocrinol (Oxf) 2006, 65: 810–5.

    Article  Google Scholar 

  37. Maruo Y, Takahashi H, Soeda I, et al. Transient congenital hypothyroidism caused by biallelic mutations of the dual oxidase 2 gene in Japanese patients detected by a neonatal screening program. J Clin Endocrinol Metab 2008, 93: 4261–7.

    Article  PubMed  Google Scholar 

  38. Ohye H, Fukata S, Hishinuma A, et al. A novel homozygous missense mutation of the dual oxidase 2 (DUOX2) gene in an adult patient with large goiter. Thyroid 2008, 18: 561–6.

    Article  PubMed  Google Scholar 

  39. Tonacchera M, De Marco G, Agretti P, et al. Identification and functional studies of two new dual-oxidase 2 (DUOX2) mutations in a child with congenital hypothyroidism and a eutopic normal-size thyroid gland. J Clin Endocrinol Metab 2009, 94: 4309–14.

    Article  PubMed  Google Scholar 

  40. Hoste C, Rigutto S, Van Vliet G, Miot F, De Deken X. Compound heterozygosity for a novel hemizygous missense mutation and a partial deletion affecting the catalytic core of the H2O2-generating enzyme DUOX2 associated with transient congenital hypothyroidism. Hum Mutat 2010, 31: E1304–19.

    Article  PubMed  Google Scholar 

  41. De Marco G, Agretti P, Montanelli L, et al. Identification and functional analysis of novel dual oxidase 2 (DUOX2) mutations in children with congenital or subclinical hypothyroidism. J Clin Endocrinol Metab 2011, 96: E1335–9.

    Article  PubMed  Google Scholar 

  42. Narumi S, Muroya K, Asakura Y, Aachi M, Hasegawa T. Molecular basis of thyroid dyshormonogenesis: genetic screening in population-based Japanese patients. J Clin Endocrinol Metab 2011, 96: E1838–42.

    Article  PubMed  Google Scholar 

  43. Cortinovis, Zamproni, Pesani, et al. Prevalence of DUOX2 mutations among children affected by congenital hypothyroidism adn dyshormonogenesis. Horm Res 2008, 70: 40.

    Google Scholar 

  44. Hulur I, Hermanns P, Nestoris C, et al. A single copy of the recently identified dual oxidase maturation factor (DUOXA) 1 gene produces only mild transient hypothyroidism in a patient with a novel biallelic DUOXA2 mutation and monoallelic DUOXA1 deletion. J Clin Endocrinol Metab 2011, 96: E841–5.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Weber MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, G., Rabbiosi, S., Zamproni, I. et al. Genetic defects of hydrogen peroxide generation in the thyroid gland. J Endocrinol Invest 36, 261–266 (2013). https://doi.org/10.3275/8847

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3275/8847

Key-words

Navigation