Skip to main content

Advertisement

Log in

Italian Society of Endocrinology Career Award Lecture: From somatostatin to… somatomedin

  • Short Review
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Somatostatin plays different parts in hormonal regulation through 5 specific receptors in human body. It has two interesting actions such as an antisecretory activity, mostly on the gastrointestinal system and pituitary level, and an antiproliferative action on tumor cells. Many synthetic somatostatin analogues, more stable than the natural one, have been developed and two are already used in different clinical settings, including endocrine oncology. The inhibitory action on tumor growth may result from both indirect actions, namely the suppression of growth factors and growth-promoting hormones (e.g., GH/IGF-I axis) and inhibition of angiogenesis, as well as modulation of the immune system, and direct actions, such as activation of anti-growth activities (e.g., apoptosis). Recently, the development of specific polyclonal antibodies allowed the precise identification of the 5 specific somatostatin receptors and their localization in different cell species. Somatostatin receptor subtypes belong to the G protein-coupled receptor family, share a common molecular topology, and can traffic not only in vitro within different cell types but also in vivo. A picture of the pathways and proteins involved in these processes is beginning to emerge. Moreover, the process of homo- and/or heterodimerization of G-protein coupled receptors and receptor tyrosine kinase families are crucial for implicating the fundamental properties of receptor proteins including receptor expression, trafficking, and desensitization, as well as signal transduction. Furthermore, functional consequences of such an interaction in modulation of signaling pathways linked to pathological conditions specifically in cancer are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brazeau P, Vale W, Burgus R, et al. Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 1973, 179: 77–9.

    Article  PubMed  Google Scholar 

  2. Lewin MJ. The somatostatin receptor in the GI tract. Annu Rev Physiol 1992, 54: 455–68.

    Article  PubMed  Google Scholar 

  3. Epelbaum J, Dournaud P, Fodor M, Viollet C. The neurobiology of somatostatin. Crit Rev Neurobiol 1994, 8: 25–44.

    PubMed  Google Scholar 

  4. Lamberts SW, van der Lely AJ, de Herder WW, Hofland LJ. Octreotide. N Engl J Med 1996, 334: 246–54.

    Article  PubMed  Google Scholar 

  5. Moller LN, Stidsen CE, Hartmann B, Holst JJ. Somatostatin receptors. Biochim Biophys Acta 2003, 1616: 1–84.

    Article  PubMed  Google Scholar 

  6. Hofland LJ, Lamberts SW. The pathophysiological consequences of somatostatin receptor internalization and resistance. Endocr Rev 2003, 24: 28–47.

    Article  PubMed  Google Scholar 

  7. Córdoba-Chacón J, Gahete MD, Duràn-Prado M, Luque RM, Castaño J. Truncated somatostatin receptors as new players in somatostatin-cortistatin pathophysiology. Ann NY Acad Sci 2011, 1220: 6–15.

    Article  PubMed  Google Scholar 

  8. Jaquet P, Saveanu A, Barlier A. New SRIF analogs in the control of human pituitary adenomas: perspectives. J Endocrinol Invest 2005, 28 (5 Suppl): 14–8.

    PubMed  Google Scholar 

  9. Ferone D, Gatto F, Arvigo M, et al. The clinical-molecular interface of somatostatin, dopamine and their receptors in pituitary pathophysiology. J Mol Endocrinol 2009, 42: 361–70.

    Article  PubMed  Google Scholar 

  10. Gatto F, Hofland LJ. The role of somatostatin and dopamine D2 receptors in endocrine tumors. Endocr Relat Cancer 2011, 18: R233–51.

    Article  PubMed  Google Scholar 

  11. Lewis I, Albert R, Kneuer R, et al. Medicinal chemistry of somatostatin analogs leading to the DTPA and DOTA conjugates of the multi-receptor-ligand SOM230. J Endocrinol Invest 2005, 28 (1 Suppl): 15–20.

    PubMed  Google Scholar 

  12. Colao A, Petersenn S, Newell-Price J, et al; Pasireotide B2305 Study Group. A 12-month phase 3 study of pasireotide in Cushing’s disease. N Engl J Med 2012, 366: 914–24.

    Article  PubMed  Google Scholar 

  13. Petersenn S, Schopohl J, Barkan A, et al; Pasireotide Acromegaly Study Group. Pasireotide (SOM230) demonstrates efficacy and safety in patients with acromegaly: a randomized, multicenter, phase II trial. J Clin Endocrinol Metab 2010, 95: 2781–9.

    Article  PubMed  Google Scholar 

  14. Reisine T, Bell GI. Molecular biology of somatostatin receptors. Endocr Rev 1995, 16: 427–42.

    PubMed  Google Scholar 

  15. Patel YC. Somatostatin and its receptor family. Front Neuroendocrinol 1999, 20: 157–98.

    Article  PubMed  Google Scholar 

  16. Florio T. Molecular mechanisms of the antiproliferative activity of somatostatin receptors (SSTRs) in neuroendocrine tumors. Front Biosci 2008, 13: 822–40.

    Article  PubMed  Google Scholar 

  17. Schonbrunn A. Selective agonism in somatostatin receptor signaling and regulation. Mol Cell Endocrinol 2008, 286: 35–9.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Hofland LJ, Visser-Wisselaar HA, Lamberts SW. Somatostatin analogs: clinical application in relation to human somatostatin receptor subtypes. Biochem Pharmacol 1995, 50: 287–97.

    Article  PubMed  Google Scholar 

  19. Susini C, Buscail L. Rationale for the use of somatostatin analogs as antitumor agents. Ann Oncol 2006, 17: 1733–42.

    Article  PubMed  Google Scholar 

  20. Melmed S. Acromegaly. N Engl J Med 2006, 355: 2558–73.

    Article  PubMed  Google Scholar 

  21. Swearingen B, Barker FG 2nd, Katznelson L, et al. Long-term mortality after transsphenoidal surgery and adjunctive therapy for acromegaly. J Clin Endocrinol Metab 1998, 83: 3419–26.

    PubMed  Google Scholar 

  22. Bengtsson BA, Eden S, Ernest I, Oden A, Sjogren B. Epidemiology and long-term survival in acromegaly. A study of 166 cases diagnosed between 1955 and 1984. Acta Med Scand 1988, 223: 327–35.

    Article  PubMed  Google Scholar 

  23. Renehan AG, Bhaskar P, Painter JE, et al. The prevalence and characteristics of colorectal neoplasia in acromegaly. J Clin Endocrinol Metab 2000, 85: 3417–24.

    Article  PubMed  Google Scholar 

  24. Colao A, Martino E, Cappabianca P, Cozzi R, Scanarini M, Ghigo E; A.L.I.C.E. Study Group. First-line therapy of acromegaly: a statement of the A.L.I.C.E. (Acromegaly primary medical treatment Learning and Improvement with Continuous Medical Education) Study Group. J Endocrinol Invest 2006, 29: 1017–20.

    PubMed  Google Scholar 

  25. Colao A, Ferone D, Lastoria S, et al. Prediction of efficacy of octreotide therapy in patients with acromegaly. J Clin Endocrinol Metab 1996, 81: 2356–62.

    PubMed  Google Scholar 

  26. Colao A, Auriemma RS, Rebora A, et al. Significant tumour shrinkage after 12 months of lanreotide Autogel-120 mg treatment given first-line in acromegaly. Clin Endocrinol (Oxf) 2009, 71: 237–45.

    Article  Google Scholar 

  27. Ferone D, Colao A, van der Lely AJ, Lamberts SW. Pharmacotherapy or surgery as primary treatment for acromegaly? Drugs Aging 2000, 17: 81–92.

    Article  PubMed  Google Scholar 

  28. Ferone D, de Herder WW, Pivonello R, et al. Correlation of in vitro and in vivo somatotropic adenoma responsiveness to somatostatin analogs and dopamine agonists with immunohistochemical evaluation of somatostatin and dopamine receptors and electron microscopy. J Clin Endocrinol Metab 2008, 93: 1412–7.

    Article  PubMed  Google Scholar 

  29. Wildemberg LE, Vieira Neto L, Costa DF, et al. Low somatostatin receptor subtype 2, but not dopamine receptor subtype 2, expression predicts the lack of biochemical response of somatotropinomas to treatment with somatostatin analogs. J Endocrinol Invest 2012, March 26 [Epub ahead of print]; doi: 10.3275/8305.

  30. Lamberts SW. The role of somatostatin in the regulation of anterior pituitary hormone secretion and the use of its analogs in the treatment of human pituitary tumors. Endocr Rev 1988, 9: 417–36.

    Article  PubMed  Google Scholar 

  31. Quabbe HJ, Plockinger U. Dose-response study and long term effect of the somatostatin analog octreotide in patients with therapy-resistant acromegaly. J Clin Endocrinol Metab 1989, 68: 873–81.

    Article  PubMed  Google Scholar 

  32. Shimon I, Yan X, Taylor JE, Weiss MH, Culler MD, Melmed S. Somatostatin receptor (SSTR) subtype-selective analogues differentially suppress in vitro growth hormone and prolactin in human pituitary adenomas. Novel potential therapy for functional pituitary tumors. J Clin Invest 1997, 100: 2386–92.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Zheng H, Bailey A, Jiang MH, et al. Somatostatin receptor subtype 2 knockout mice are refractory to growth hormone-negative feedback on arcuate neurons. Mol Endocrinol 1997, 11: 1709–17.

    Article  PubMed  Google Scholar 

  34. Murray RD, Kim K, Ren SG, Chelly M, Umehara Y, Melmed S. Central and peripheral actions of somatostatin on the growth hormone-IGF-I axis. J Clin Invest 2004, 114: 349–56.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Neggers SJ, van der Lely AJ. Somatostatin analog and pegvisomant combination therapy for acromegaly. Nat Rev Endocrinol 2009, 5: 546–52.

    Article  PubMed  Google Scholar 

  36. Neggers SJ, van Aken MO, de Herder WW, et al. Quality of life in acromegalic patients during long-term somatostatin analog treatment with and without pegvisomant. J Clin Endocrinol Metab 2008, 93: 3853–9.

    Article  PubMed  Google Scholar 

  37. Neggers SJ, Kopchick JJ, Jorgensen JO, van der Lely AJ. Hypothesis: Extra-hepatic acromegaly: a new paradigm? Eur J Endocrinol 2011, 164: 11–6.

    Article  PubMed  Google Scholar 

  38. Neggers SJ, van der Lely AJ. Combination treatment with somatostatin analogues and pegvisomant in acromegaly. Growth Horm IGF Res 2011, 21: 129–33.

    Article  PubMed  Google Scholar 

  39. Blalock JE. Shared ligands and receptors as a molecular mechanism for communication between the immune and neuroendocrine systems. Ann N Y Acad Sci 1994, 741: 292–8.

    Article  PubMed  Google Scholar 

  40. van Hagen PM, Krenning EP, Kwekkeboom DJ, et al. Somatostatin and the immune and haematopoetic system; a review. Eur J Clin Invest 1994, 24: 91–9.

    Article  PubMed  Google Scholar 

  41. Ferone D, Pivonello R, Van Hagen PM, et al. Quantitative and functional expression of somatostatin receptor subtypes in human thymocytes. Am J Physiol Endocrinol Metab 2002, 283: E1056–66.

    PubMed  Google Scholar 

  42. Lichtenauer-Kaligis EG, Dalm VA, Oomen SP, et al. Differential expression of somatostatin receptor subtypes in human peripheral blood mononuclear cell subsets. Eur J Endocrinol 2004, 150: 565–77.

    Article  PubMed  Google Scholar 

  43. Reubi JC, Horisberger U, Kappeler A, Laissue JA. Localization of receptors for vasoactive intestinal peptide, somatostatin, and substance P in distinct compartments of human lymphoid organs. Blood 1998, 92: 191–7.

    PubMed  Google Scholar 

  44. Ferone D, van Hagen PM, van Koetsveld PM, et al. In vitro characterization of somatostatin receptors in the human thymus and effects of somatostatin and octreotide on cultured thymic epithelial cells. Endocrinology 1999, 140: 373–80.

    Article  PubMed  Google Scholar 

  45. Ferone D, Pivonello R, Kwekkeboom DJ, et al. Immunohistochemical localization and quantitative expression of somatostatin receptors in normal human spleen and thymus: Implications for the in vivo visualization during somatostatin receptor scintigraphy. J Endocrinol Invest 2012, 35: 528–34.

    PubMed  Google Scholar 

  46. Ferone D, van Hagen MP, Kwekkeboom DJ, et al. Somatostatin receptor subtypes in human thymoma and inhibition of cell proliferation by octreotide in vitro. J Clin Endocrinol Metab 2000, 85: 1719–26.

    Article  PubMed  Google Scholar 

  47. Ferone D, Kwekkeboom DJ, Pivonello R, et al. In vivo and in vitro expression of somatostatin receptors in two human thymomas with similar clinical presentation and different histological features. J Endocrinol Invest 2001, 24: 522–8.

    PubMed  Google Scholar 

  48. Ferone D, Montella L, De Chiara A, Hofland LJ, Lamberts SW, Palmieri G. Somatostatin receptor expression in thymic tumors. Front Biosci 2009, 14: 3304–9.

    Article  Google Scholar 

  49. Dardenne M, Savino W, Gagnerault MC, Itoh T, Bach JF. Neuroendocrine control of thymic hormonal production. I. Prolactin stimulates in vivo and in vitro the production of thymulin by human and murine thymic epithelial cells. Endocrinology 1989, 125: 3–12.

    Article  PubMed  Google Scholar 

  50. Timsit J, Savino W, Safieh B, et al. Growth hormone and insulinlike growth factor-I stimulate hormonal function and proliferation of thymic epithelial cells. J Clin Endocrinol Metab 1992, 75: 183–8.

    PubMed  Google Scholar 

  51. Andersen A, Pedersen H, Bendtzen K, Ropke C. Effects of growth factors on cytokine production in serum-free cultures of human thymic epithelial cells. Scand J Immunol 1993, 38: 233–8.

    Article  PubMed  Google Scholar 

  52. Savino W, Dardenne M. Neuroendocrine control of thymus physiology. Endocr Rev 2000, 21: 412–43.

    PubMed  Google Scholar 

  53. Baserga R, Peruzzi F, Reiss K. The IGF-1 receptor in cancer biology. Int J Cancer 2003, 107: 873–7.

    Article  PubMed  Google Scholar 

  54. Rinke A, Müller HH, Schade-Brittinger C, et al; PROMID Study Group. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID Study Group. J Clin Oncol 2009, 27: 4656–63.

    Article  PubMed  Google Scholar 

  55. Djavan B. Editorial. Prostate cancer update. BJU Int 2007, 100(Suppl 2): 1.

    Article  PubMed  Google Scholar 

  56. Kosari F, Munz JM, Savci-Heijink CD, et al. Identification of prognostic biomarkers for prostate cancer. Clin Cancer Res 2008, 14: 1734–43.

    Article  PubMed  Google Scholar 

  57. Dizeyi N, Konrad L, Bjartell A, et al. Localization and mRNA expression of somatostatin receptor subtypes inhuman prostatic tissue and prostate cancer cell lines. Urol Oncol 2002, 7: 91–8.

    Article  PubMed  Google Scholar 

  58. Hansson J, Bjartell A, Gadaleanu V, Dizeyi N, Abrahamsson PA. Expression of somatostatin receptor subtypes 2 and 4 in human benign prostatic hyperplasia and prostatic cancer. Prostate 2002, 53: 50–9.

    Article  PubMed  Google Scholar 

  59. Ruscica M, Arvigo M, Gatto F, et al. Regulation of prostate cancer cell proliferation by somatostatin receptor activation. Mol Cell Endocrinol 2010, 315: 254–62.

    Article  PubMed  Google Scholar 

  60. Arvigo M, Gatto F, Ruscica M, et al. Somatostatin and dopamine receptor interaction in prostate and lung cancer cell lines. J Endocrinol 2010, 207: 309–17.

    Article  PubMed  Google Scholar 

  61. Hasskarl J, Kaufmann M, Schmid HA. Somatostatin receptors in non-neuroendocrine malignancies: the potential role of somatostatin analogs in solid tumors. Future Oncol 2011, 7: 895–913.

    Article  PubMed  Google Scholar 

  62. Mitsiades CS, Bogdanos J, Karamanolakis D, Milathianakis C, Dimopoulos T, Koutsilieris M. Randomized controlled clinical trial of a combination of somatostatin analog and dexamethasone plus zoledronate vs. zoledronate in patients with androgen ablation-refractory prostate cancer. Anticancer Res 2006, 26: 3693–700.

    PubMed  Google Scholar 

  63. O’Byrne KJ, Schally AV, Thomas A, Carney DN, Steward WP. Somatostatin, its receptors and analogs, in lung cancer. Chemotherapy 2001, 47(Suppl 2): 78–108.

    PubMed  Google Scholar 

  64. Papotti M, Croce S, Bello M, et al. Expression of somatostatin receptor types 2, 3 and 5 in biopsies and surgical specimens of human lung tumours. Correlation with preoperative octreotide scintigraphy. Virchows Arch 2001, 439: 787–97.

    PubMed  Google Scholar 

  65. Sun LC, Coy DH. Somatostatin receptor-targeted anti-cancer therapy. Curr Drug Deliv 2011, 8: 2–10.

    Article  PubMed  Google Scholar 

  66. Ferone D, Arvigo M, Semino C, et al. Somatostatin and dopamine receptor expression in lung carcinoma cells and effects of chimeric somatostatin-dopamine molecules on cell proliferation. Am J Physiol Endocrinol Metab 2005, 289: E1044–50.

    Article  PubMed  Google Scholar 

  67. McPherson K, Steel CM, Dixon JM. ABC of breast diseases. Breast cancer-epidemiology, risk factors, and genetics. BMJ 2000, 321: 624–8.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Kumar U, Grigorakis SI, Watt HL, et al. Somatostatin receptors in primary human breast cancer: quantitative analysis of mRNA for subtypes 1—5 and correlation with receptor protein expression and tumor pathology. Breast Cancer Res Treat 2005, 92: 175–86.

    Article  PubMed  Google Scholar 

  69. Byrne C, Schairer C, Wolfe J, et al. Mammographic features and breast cancer risk: effects with time, age, and menopause status. J Natl Cancer Inst 1995, 87: 1622–9.

    Article  PubMed  Google Scholar 

  70. Tagliafico A, Calabrese M, Tagliafico G, et al. Increased mammographic breast density in acromegaly: quantitative and qualitative assessment. Eur J Endocrinol 2011, 164: 335–40.

    Article  PubMed  Google Scholar 

  71. Prevost G, Foehrle E, Thomas F, et al. Growth of human breast cancer cell lines is inhibited by the somatostatin analog BIM23014. Endocrinology 1991, 129: 323–9.

    Article  PubMed  Google Scholar 

  72. Pagliacci MC, Tognellini R, Grignani F, Nicoletti I. Inhibition of human breast cancer cell (MCF-7) growth in vitro by the somatostatin analog SMS 201–995: effects on cell cycle parameters and apoptoticcell death. Endocrinology 1991, 129: 2555–62.

    Article  PubMed  Google Scholar 

  73. Weckbecker G, Liu R, Tolcsvai L, Bruns C. Antiproliferative effects of the somatostatin analogue octreotide (SMS 201–995) on ZR-75-1 human breast cancer cells in vivo and in vitro. Cancer Res 1992, 52: 4973–8.

    PubMed  Google Scholar 

  74. Ruan W, Fahlbusch F, Clemmons DR, et al. SOM230 inhibits insulin-like growth factor-I action in mammary gland development by pituitary independent mechanism: mediated through somatostatin subtype receptor 3? Mol Endocrinol 2006, 20: 426–36.

    Article  PubMed  Google Scholar 

  75. Kleinberg DL, Ameri P, Singh B. Pasireotide, an IGF-I action inhibitor, prevents growth hormone and estradiol-induced mammary hyperplasia. Pituitary 2011, 14: 44–52.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Ferone MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferone, D. Italian Society of Endocrinology Career Award Lecture: From somatostatin to… somatomedin. J Endocrinol Invest 35, 869–874 (2012). https://doi.org/10.3275/8583

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3275/8583

Key-words

Navigation