Skip to main content

Advertisement

Log in

Clinical use of placental hormones in pregnancymanagement

  • Short Review
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Across human pregnancy, placenta represents a transit of oxygen and nutrients from the mother to the fetus and actively produces a large number of hormones that serve to regulate and balance maternal and fetal physiology. An abnormal secretion of placental hormones may be part of the pathogenesis of the main obstetric syndrome, from early to late pregnancy, in particular chromosomopathies, miscarriage, gestational trophoblastic diseases, preeclampsia, gestational diabetes, and pre-term delivery. The possibility to measure placental hormones represents an important tool not only for the diagnosis and management of gestational disorders, but it is also fundamental in the early identification of women at risk for these pregnancy complications. In the last decades, the use of ultrasound examination has provided additional biophysical markers, improving the early diagnosis of gestational diseases. In conclusion, while few placental hormones have sufficient sensitivity for clinical application, there are promising new biochemical and biophysical markers that, if used in combination, may provide a valid screening tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Petraglia F, Imperatore A, Challis JR. Neuroendocrine mechanisms in pregnancy and parturition. Endocr Rev 2010, 31: 783–816.

    Article  CAS  PubMed  Google Scholar 

  2. De Bonis M, Torricelli M, Severi FM, Luisi S, De Leo V, Petraglia F. Neuroendocrine aspects of placenta and pregnancy. Gynecol Endocrinol 2012, 28 (Suppl 1): 22–6.

    Google Scholar 

  3. Feldt-Rasmussen U, Mathiesen ER. Endocrine disorders in pregnancy: Physiological and hormonal aspects of pregnancy. Best Pract Res Clin End Metab 2011, 25: 875–84.

    Article  CAS  Google Scholar 

  4. Petraglia F, Florio P, Torricelli M. Placental endocrine function. Knobil and Neill’s physiology of reproduction. 3rd ed. Boston: Elsevier. 2006, 2847–97.

    Google Scholar 

  5. McLean M, Bisits A, Davies J, Woods R, Lowry P, Smith R. A placental clock controlling the length of human pregnancy. Nat Med 1995, 1: 460–3.

    Article  CAS  PubMed  Google Scholar 

  6. Reis FM, D’Antona D, Petraglia F. Predictive value of hormone measurements in maternal and fetal complications of pregnancy. Endocr Rev 2002, 23: 230–57.

    Article  CAS  PubMed  Google Scholar 

  7. Murphy VE, Smith R, Giles WB, Clifton VL. Endocrine regulation of human fetal growth: the role of the mother, placenta, and fetus. Endocr Rev 2006, 27: 141–69.

    Article  PubMed  Google Scholar 

  8. Torricelli M, Voltolini C, De Bonis M, et al. The identification of high risk pregnancy: a new challenge in obstetrics. J Matern Fetal Neonatal Med 2012, 25 (Suppl 1): 2–5.

    Article  Google Scholar 

  9. Petraglia F, Florio P, Nappi C, Genazzani AR. Peptide signaling in human placenta and membranes: autocrine, paracrine, and endocrine mechanisms. Endocr Rev 1996, 17: 156–86.

    CAS  PubMed  Google Scholar 

  10. Schindler AE. Endocrinology of pregnancy: consequences for the diagnosis and treatment of pregnancy disorders. J Steroid Biochem Mol Biol 2005, 97: 386–8.

    Article  CAS  PubMed  Google Scholar 

  11. Goodwin TM. A role for estriol in human labor, term and preterm. Am J Obstet Gynecol 1999, 180: S208–13.

    Article  CAS  PubMed  Google Scholar 

  12. Smith R, Smith JI, Shen X, et al. Patterns of plasma corticotropin-releasing hormone, progesterone, estradiol, and estriol change and the onset of human labor. J Clin Endocrinol Metab 2009, 94: 2066–74.

    Article  CAS  PubMed  Google Scholar 

  13. Mesiano S, Welsh TN. Steroid hormone control of myometrial contractility and parturition. Semin Cell Dev Biol 2007, 18: 321–31.

    Article  CAS  PubMed  Google Scholar 

  14. Cole LA. Biological functions of hCG and hCG-related molecules. Reprod Biol Endocrinol 2010, 8: 102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Walker WH, Fitzpatrick SL, Barrera-Saldaña HA, Resendez-Perez D, Saunders GF. The human placental lactogen genes: structure, function, evolution and transcriptional regulation. Endocr Rev 1991, 12: 316–28.

    Article  CAS  PubMed  Google Scholar 

  16. Kirkegaard I, Uldbjerg N, Oxvig C. Biology of pregnancy-associated plasma protein-A in relation to prenatal diagnostics: an overview. Acta Obstet Gynecol Scand 2010, 89: 1118–25.

    Article  CAS  PubMed  Google Scholar 

  17. Folkersen J, Grudzinskas JG, Hindersson P, Teisner B, Westergaard JG. Pregnancy-associated plasma protein A: circulating levels during normal pregnancy. Am J Obstet Gynecol 1981, 139: 910–4.

    Article  CAS  PubMed  Google Scholar 

  18. Florio P, Vale W, Petraglia F. Urocortins in human reproduction. Peptides 2004, 25: 1751–7.

  19. Reis FM, Fadalti M, Florio P, Petraglia F. Putative role of placental corticotropin-releasing factor in the mechanisms of human parturition. J Soc Gynecol Invest 1999, 6: 109–19.

    Article  CAS  Google Scholar 

  20. Åsvold BO, Eskild A, Jenum PA, Vatten LJ. Maternal concentrations of insulin-like growth factor I and insulin-like growth factor binding protein 1 during pregnancy and birth weight of offspring. Am J Epidemiol 2011, 174: 129–35.

    Article  PubMed  Google Scholar 

  21. Florio P, Cobellis L, Luisi S, et al. Changes in inhibins and activin secretion in healthy and pathological pregnancies. Mol Cell Endocrinol 2001, 180: 123–30.

    Article  CAS  PubMed  Google Scholar 

  22. Benton SJ, Hu Y, Xie F, et al. Can placental growth factor in maternal circulation identify fetuses with placental intrauterine growth restriction? Am J Obstet Gynecol 2012, 206: 163.e1–7.

    Article  CAS  Google Scholar 

  23. Jacobs M, Nassar N, Roberts CL, Hadfield R, Morris JM, Ashton AW. Levels of soluble fms-like tyrosine kinase one in first trimester and outcomes of pregnancy: a systematic review. Reprod Biol Endocrinol 2011, 9: 77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Masuzaki H, Ogawa Y, Sagawa N et al. Nonadipose tissue production of leptin: leptin as a novel placentaderived hormone in humans. Nat Med 1997, 3: 1029–33.

    Article  CAS  PubMed  Google Scholar 

  25. Spencer K, Souter V, Tul N, Snijders R, Nicolaides KH. A screening program for trisomy 21 at 10-14 weeks using fetal nuchal translucency, maternal serum free beta-human chorionic gonadotropin and pregnancy-associated plasma protein-A. Ultrasound Obstet Gynecol 1999, 13: 231–7.

    Article  CAS  PubMed  Google Scholar 

  26. Reynolds T. The triple test as a screening technique for Down syndrome: reliability and relevance. Int J Womens Health 2010, 2: 83–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dugoff L, Hobbins JC, Malone FD, et al; FASTER Trial Research Consortium. Quad screen as a predictor of adverse pregnancy outcome. Obstet Gynecol 2005, 106: 260–7.

    PubMed  Google Scholar 

  28. Creasy RK, Resnik R, Iams JD, Lockwood CJ, Moore TR. Creasy and Resnik’s maternal-fetal medicine. 6th Edition. Philadelphia: Saunders Elsevier, 2009.

    Google Scholar 

  29. Muttukrishna S, Jauniaux E, Greenwold N, et al. Circulating levels of inhibin A, activin A and follistatin in missed and recurrent miscarriages. Hum Reprod 2002, 17: 3072–8.

    Article  CAS  PubMed  Google Scholar 

  30. Elson J, Tailor A, Salim R, Hillaby K, Dew T, Jurkovic D. Expectant management of miscarriage-prediction of outcome using ultrasound and novel biochemical markers. Hum Reprod 2005, 20: 2330–3.

    Article  CAS  PubMed  Google Scholar 

  31. RCOG. The management of gestational trophoblastic disease. Green-top Guideline 2010 No. 38.

  32. Lurain JR. Gestational trophoblastic disease I: epidemiology, pathology, clinical presentation and diagnosis of gestational trophoblastic disease, and management of hydatidiform mole. Am J Obstet Gynecol 2010, 203: 531–9.

    Article  PubMed  Google Scholar 

  33. Florio P, Severi FM, Cobellis L, et al. Serum activin A and inhibin A. New clinical markers for hydatidiform mole. Cancer 2002 94: 2618–22.

    Article  PubMed  Google Scholar 

  34. Sibai BM. Preeclampsia as a cause of preterm and late preterm (near-term) births. Semin Perinatol 2006, 30: 16–9.

    Article  PubMed  Google Scholar 

  35. Verlohren S, Herraiz I, Lapaire O, et al. Risk stratification of hypertensive pregnancy disorders. Eur Ob Gyn 2012, 7: 14–7.

    Google Scholar 

  36. Banzola I, Farina A, Concu M, et al. Performance of a panel of maternal serum markers in predicting preeclampsia at 11–15 weeks’ gestation. Prenat Diagn 2007, 27: 1005–10.

    Article  PubMed  Google Scholar 

  37. Spencer K, Yu CK, Savvidou M, Papageorghiou AT, Nicolaides KH. Prediction of pre-eclampsia by uterine artery Doppler ultrasonography and maternal serum pregnancy-associated plasma protein-A, free beta-human chorionic gonadotropin, activin A and inhibin A at 22 + 0 to 24 + 6 weeks’ gestation. Ultrasound Obstet Gynecol 2006, 27: 658–63.

    Article  CAS  PubMed  Google Scholar 

  38. Florio P, Reis FM, Pezzani I, Luisi S, Severi FM, Petraglia F. The addition of activin A and inhibin A measurement to uterine artery Doppler velocimetry to improve the early prediction of pre-eclampsia. Ultrasound Obstet Gynecol 2003, 21: 165–9.

    Article  CAS  PubMed  Google Scholar 

  39. Odibo AO, Zhong Y, Goetzinger KR, et al. First-trimester placental protein 13, PAPP-A, uterine artery Doppler and maternal characteristics in the prediction of pre-eclampsia. Placenta 2011, 32: 598–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Goetzinger KR, Singla A, Gerkowicz S, Dicke JM, Gray DL, Odibo AO. Predicting the risk of pre-eclampsia between 11 and 13 weeks’ gestation by combining maternal characteristics and serum analytes, PAPP-A and free β-hCG. Prenat Diagn 2010, 30: 1138–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Spencer K, Cowans NJ, Nicolaides KH. Low levels of maternal serum PAPP-A in the first trimester and the risk of pre-eclampsia. Prenat Diagn 2008, 28: 7–10.

    Article  PubMed  Google Scholar 

  42. Akolekar R, Syngelaki A, Sarquis R, Zvanca M, Nicolaides KH. Prediction of early, intermediate and late pre-eclampsia from maternal factors, biophysical and biochemical markers at 11-13 weeks. Prenat Diagn 2011, 31: 66–74.

    Article  PubMed  Google Scholar 

  43. Yu J, Shixia CZ,Wu Y, Duan T. Inhibin A, activin A, placental growth factor and uterine artery Doppler pulsatility index in the prediction of pre-eclampsia. Ultrasound Obstet Gynecol 2011, 37: 528–33.

    Article  CAS  PubMed  Google Scholar 

  44. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2012, 35 (Suppl 1): S64–71.

    Article  Google Scholar 

  45. Miehle K, Stepan H, Fasshauer M. Leptin, adiponectin and other adipokines in gestational diabetes mellitus and pre-eclampsia. Clin Endocrinol 2012, 76: 2–11.

    Article  CAS  Google Scholar 

  46. Romero R, Espinoza J, Kusanovic JP, et al. The preterm parturition syndrome. BJOG 2006, 113: 17–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lockwood CJ. The diagnosis of preterm labor and the prediction of preterm delivery. Clin Obstet Gynecol 1995, 38: 675–87.

    Article  CAS  PubMed  Google Scholar 

  48. Florio P, Linton EA, Torricelli M, et al. Prediction of preterm delivery based on maternal plasma urocortin. J Clin Endocrinol Metab 2007, 92: 4734–7.

    Article  CAS  PubMed  Google Scholar 

  49. Chandiramani M, Di Renzo GC, Gottschalk E, et al. Fetal fibronectin as a predictor of spontaneous preterm birth: a European perspective. J Matern Fetal Neonatal Med 2011, 24: 330–6.

    Article  PubMed  Google Scholar 

  50. Cooper S, Lange I, Wood S, Tang S, Miller L, Ross S. Diagnostic accuracy of rapid phIGFBP-I assay for predicting preterm labor in symptomatic patients. J Perinatol 2012, 32: 460–5.

    Article  CAS  PubMed  Google Scholar 

  51. Hobel CJ, Dunkel-Schetter C, Roesch SC, Castro LC, Arora CP. Maternal plasma corticotropin-releasing hormone associated with stress at 20 weeks’ gestation in pregnancies ending in preterm delivery. Am J Obstet Gynecol 1999, 180: 257–63.

    Article  Google Scholar 

  52. McGregor JA, Jackson GM, Lachelin GC, et al. Salivary estriol as risk assessment for preterm labor: a prospective trial. Am J Obstet Gynecol 1995, 173: 1337–42.

    Article  CAS  PubMed  Google Scholar 

  53. Heine RP, McGregor JA, Goodwin TM et al. Serial salivary estriol to detect an increased risk of preterm birth. Obstet Gynecol 2000, 96: 490–7.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Petraglia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Bonis, M., Vellucci, F., Di Tommaso, M. et al. Clinical use of placental hormones in pregnancymanagement. J Endocrinol Invest 35, 776–781 (2012). https://doi.org/10.3275/8512

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3275/8512

Key-words

Navigation