Skip to main content

Advertisement

Log in

The pituitary tumor transforming gene in thyroid cancer

  • Review Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

The pituitary tumor transforming gene (PTTG) is a multifunctional proto-oncogene that is over-expressed in various tumors including thyroid carcinomas, where it is a prognostic indicator of tumor recurrence. PTTG has potent transforming capabilities in vitro and in vivo, and many studies have investigated the potential mechanisms by which PTTG contributes to tumorigenesis. As the human securin, PTTG is involved in critical mechanisms of cell cycle regulation, whereby aberrant expression induces aneuploidy. PTTG may further contribute to tumorigenesis through its role in DNA damage response pathways and via complex interactions with hormones and growth factors. Furthermore, PTTG over-expression negatively impacts upon the efficacy of radioiodine therapy in thyroid cancer, through repression of expression and function of the sodium iodide symporter. Given its various roles at all disease stages, PTTG appears to be an important oncogene in thyroid cancer. This review discusses the current knowledge of PTTG with particular focus on its role in thyroid cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. British Thyroid Association, Royal College of Physicians. Guidelines for the management of thyroid cancer. London: Royal College of Physicians, 2007.

    Google Scholar 

  2. Davies L, Welch HG. Increasing incidence of thyroid cancer in the United States, 1973–2002. JAMA 2006, 295: 2164–7.

    CAS  PubMed  Google Scholar 

  3. Mazzaferri EL, Jhiang SM. Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am J Med 1994, 97: 418–28.

    CAS  PubMed  Google Scholar 

  4. Jonklaas J, Sarlis NJ, Litofsky D, et al. Outcomes of patients with differentiated thyroid carcinoma following initial therapy. Thyroid 2006, 16: 1229–42.

    PubMed  Google Scholar 

  5. Pei L, Melmed S. Isolation and characterization of a pituitary tumor-transforming gene (PTTG). Mol Endocrinol 1997, 11: 433–41.

    CAS  PubMed  Google Scholar 

  6. Hundahl SA, Fleming ID, Fremgen AM, Menck HR. A National Cancer Data Base report on 53,856 cases of thyroid carcinoma treated in the U.S., 1985–1995. Cancer 1998, 83: 2638–48.

    CAS  PubMed  Google Scholar 

  7. Sipos JA, Mazzaferri EL. Thyroid cancer epidemiology and prognostic variables. Clin Oncol (R Coll Radiol) 2010, 22: 395–404.

    CAS  Google Scholar 

  8. Jemal A, Murray T, Samuels A, Ghafoor A, Ward E, Thun MJ. Cancer statistics, 2003. CA Cancer J Clin 2003, 53: 5–26.

    PubMed  Google Scholar 

  9. Howlader N, Noone AM, Krapcho M, et al. SEER Cancer Statistics Review 1975–2008. Bethesda: National Cancer Institute, 2011.

    Google Scholar 

  10. D’Avanzo A, Ituarte P, Treseler P, et al. Prognostic scoring systems in patients with follicular thyroid cancer: a comparison of different staging systems in predicting the patient outcome. Thyroid 2004, 14: 453–8.

    PubMed  Google Scholar 

  11. Moniz S, Catarino AL, Marques AR, Cavaco B, Sobrinho L, Leite V. Clonal origin of non-medullary thyroid tumours assessed by non-random X-chromosome inactivation. Eur J Endocrinol 2002, 146: 27–33.

    CAS  PubMed  Google Scholar 

  12. McCarthy RP, Wang M, Jones TD, Strate RW, Cheng L. Molecular evidence for the same clonal origin of multifocal papillary thyroid carcinomas. Clin Cancer Res 2006, 12: 2414–8.

    CAS  PubMed  Google Scholar 

  13. Marshall CJ. Ras effectors. Curr Opin Cell Biol 1996, 8: 197–204.

    CAS  PubMed  Google Scholar 

  14. Mendoza MC, Er EE, Blenis J. The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci 2011, 36: 320–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Esapa CT, Johnson SJ, Kendall-Taylor P, Lennard TW, Harris PE. Prevalence of Ras mutations in thyroid neoplasia. Clin Endocrinol (Oxf) 1999, 50: 529–35.

    CAS  Google Scholar 

  16. Vasko V, Ferrand M, Di Cristofaro J, Carayon P, Henry JF, de Micco C. Specific pattern of RAS oncogene mutations in follicular thyroid tumors. J Clin Endocrinol Metab 2003, 88: 2745–52.

    CAS  PubMed  Google Scholar 

  17. Garcia-Rostan G, Zhao H, Camp RL, et al. ras mutations are associated with aggressive tumor phenotypes and poor prognosis in thyroid cancer. J Clin Oncol 2003, 21: 3226–35.

    CAS  PubMed  Google Scholar 

  18. Peyssonnaux C, Eychène A. The Raf/MEK/ERK pathway: new concepts of activation. Biol Cell 2001, 93: 53–62.

    CAS  PubMed  Google Scholar 

  19. Handkiewicz-Junak D, Czarniecka A, Jarzab B. Molecular prognostic markers in papillary and follicular thyroid cancer: Current status and future directions. Mol Cell Endocrinol 2010, 322: 8–28.

    CAS  PubMed  Google Scholar 

  20. Kimura ET, Nikiforova MN, Zhu Z, Knauf JA, Nikiforov YE, Fagin JA. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res 2003, 63: 1454–7.

    CAS  PubMed  Google Scholar 

  21. Fukushima T, Suzuki S, Mashiko M, et al. BRAF mutations in papillary carcinomas of the thyroid. Oncogene 2003, 22: 6455–7.

    CAS  PubMed  Google Scholar 

  22. Puxeddu E, Moretti S, Elisei R, et al. BRAF(V599E) mutation is the leading genetic event in adult sporadic papillary thyroid carcinomas. J Clin Endocrinol Metab 2004, 89: 2414–20.

    CAS  PubMed  Google Scholar 

  23. Xing M. BRAF mutation in papillary thyroid cancer: Pathogenic role, molecular bases, and clinical implications. Endocr Rev 2007, 28: 742–62.

    CAS  PubMed  Google Scholar 

  24. Nikiforova MN, Kimura ET, Gandhi M, et al. BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab 2003, 88: 5399–404.

    CAS  PubMed  Google Scholar 

  25. Takano T, Ito Y, Hirokawa M, Yoshida H, Miyauchi A. BRAF V600E mutation in anaplastic thyroid carcinomas and their accompanying differentiated carcinomas. Br J Cancer 2007, 96: 1549–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. DeLuca AM, Srinivas A, Alani RM. BRAF kinase in melanoma development and progression. Expert Rev Mol Med 2008, 10: e6.

    PubMed  Google Scholar 

  27. Sullivan RJ, Flaherty KT. BRAF in Melanoma: Pathogenesis, Diagnosis, Inhibition, and Resistance. J Skin Cancer 2011, 2011: 423239.

    PubMed Central  PubMed  Google Scholar 

  28. McIver B, Grebe SK, Eberhardt NL. The PAX8/PPARgamma fusion oncogene as a potential therapeutic target in follicular thyroid carcinoma. Curr Drug Targets Immune Endocr Metabol Disord 2004, 4: 221–34.

    CAS  PubMed  Google Scholar 

  29. French CA, Alexander EK, Cibas ES, et al. Genetic and biological subgroups of low-stage follicular thyroid cancer. Am J Pathol 2003, 162: 1053–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Nikiforova MN, Lynch RA, Biddinger PW, et al. RAS point mutations and PAX8-PPAR gamma rearrangement in thyroid tumors: Evidence for distinct molecular pathways in thyroid follicular carcinoma. J Clin Endocrinol Metab 2003, 88: 2318–26.

    CAS  PubMed  Google Scholar 

  31. Dwight T, Thoppe SR, Foukakis T, et al. Involvement of the PAX8/peroxisome proliferator-activated receptor gamma rearrangement in follicular thyroid tumors. J Clin Endocrinol Metab 2003, 88: 4440–5.

    CAS  PubMed  Google Scholar 

  32. Sahin M, Allard BL, Yates M, et al. PPAR gamma staining as a surrogate for PAX8/PPAR gamma fusion oncogene expression in follicular neoplasms: Clinicopathological correlation and histopathological diagnostic value. J Clin Endocrinol Metab 2005, 90: 463–8.

    CAS  PubMed  Google Scholar 

  33. Reddi HV, McIver B, Grebe SK, Eberhardt NL. Minireview: The paired box-8/peroxisome proliferator-activated receptor-gamma oncogene in thyroid tumorigenesis. Endocrinology 2007, 148: 932–5.

    CAS  PubMed  Google Scholar 

  34. Knowles PP, Murray-Rust J, Kjaer S, et al. Structure and chemical inhibition of the RET tyrosine kinase domain. J Biol Chem 2006, 281: 33577–87.

    CAS  PubMed  Google Scholar 

  35. Mulligan LM, Kwok JB, Healey CS, et al. Germ-line mutations of the RET protooncogene in multiple endocrine neoplasia type-2a. Nature 1993, 363: 458–60.

    CAS  PubMed  Google Scholar 

  36. Schulten H-J, Al-Maghrabi J, Al-Ghamdi K, et al. Mutational screening of RET, HRAS, KRAS, NRAS, BRAF, AKT1, and CTNNB1 in medullary thyroid carcinoma. Anticancer Res 2001, 31: 4179–83.

    Google Scholar 

  37. Pierotti MA, Santoro M, Jenkins RB, et al. Characterization of an inversion on the long arm of chromosoms-10 juxtaposing D10S170 and RET and creating the oncogeneic sequenece RET PTC. Proc Natl Acad Sci U S A 1992, 89: 1616–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Santoro M, Dathan NA, Berlingieri MT, et al. Molecular characterization of RET/PTC3; a novel rearranged version of the RET protooncogene in a human thyroid papillary carcinoma. Oncogene 1994, 9: 509–16.

    CAS  PubMed  Google Scholar 

  39. Collins BJ, Chiappetta G, Schneider AB, et al. RET expression in papillary thyroid cancer from patients irradiated in childhood for benign conditions. J Clin Endocrinol Metab 2002, 87: 3941–6.

    CAS  PubMed  Google Scholar 

  40. Rusinek D, Szpak-Ulczok S, Jarzab B. Gene expression profile of human thyroid cancer in relation to its mutational status. J Mol Endocrinol 2011, 47: R91–103.

    CAS  PubMed  Google Scholar 

  41. Kim DS, McCabe CJ, Buchanan MA, Watkinson JC. Oncogenes in thyroid cancer. Clin Otolaryngol Allied Sci 2003, 28: 386–95.

    CAS  PubMed  Google Scholar 

  42. Greco A, Miranda C, Pagliardini S, Fusetti L, Bongarzone I, & Pierotti MA. Chromosome I rearrangements involving the genes TPRand NTRK1 produce structurally different thyroid-specific TRK oncogenes. Genes Chromosomes Cancer 1997, 19: 112–23.

    CAS  PubMed  Google Scholar 

  43. Delellis RA. Pathology and genetics of thyroid carcinoma. J Surg Oncol 2006, 94: 662–9.

    CAS  PubMed  Google Scholar 

  44. Pierotti MA, Bongarzone I, Borello MG, Greco A, Pilotti S, Sozzi G. Cytogenetics and molecular genetics of carcinomas arising from thyroid epithelial follicular cells. Genes Chromosomes Cancer 1996, 16: 1–14.

    CAS  PubMed  Google Scholar 

  45. Bongarzone I, Vigneri P, Mariani L, Collini P, Pilotti S, Pierotti MA. RET/NTRK1 rearrangements in thyroid gland tumors of the papillary carcinoma family: Correlation with clinicopathological features. Clin Cancer Res 1998, 4: 223–8.

    CAS  PubMed  Google Scholar 

  46. Musholt TJ, Musholt PB, Khaladj N, Schulz D, Scheumann GF, Klempnauer J 2000. Prognostic significance of RET and NTRK1 rearrangements in sporadic papillary thyroid carcinoma. Surgery 2000, 128: 984–93.

    CAS  PubMed  Google Scholar 

  47. Di Renzo MF, Olivero M, Ferro S, et al. Overexpression of the c-Met HG F Receptor gene in human thyroid carcinomas. Oncogene 1992, 7: 2549–53.

    PubMed  Google Scholar 

  48. Ramirez R, Hsu D, Patel A, et al. Over-expression of hepatocyte growth factor/scatter factor (HGF/SF) and the HGF/SF receptor (cMET) are associated with a high risk of metastasis and recurrence for children and young adults with papillary thyroid carcinoma. Clin Endocrinol (Oxf) 2000, 53: 635–44.

    CAS  Google Scholar 

  49. Mineo R, Costantino A, Frasca F, et al. Activation of the hepatocyte growth factor (HGF)-Met system in papillary thyroid cancer: Biological effects of HGF in thyroid cancer cells depend on Met expression levels. Endocrinology 2004, 145: 4355–65.

    CAS  PubMed  Google Scholar 

  50. Zhang X, Horwitz GA, Prezant TR, et al. Structure, expression, and function of human pituitary tumor-transforming gene (PTTG). Mol Endocrinol 1999, 13: 156–66.

    CAS  PubMed  Google Scholar 

  51. Domínguez A, Ramos-Morales F, Romero F, et al. hpttg, a human homologue of rat pttg, is overexpressed in hematopoietic neoplasms. Evidence for a transcriptional activation function of hPTTG. Oncogene 1998, 17: 2187–93.

    PubMed  Google Scholar 

  52. Kakar SS, Jennes L Molecular cloning and characterization of the tumor transforming gene (TUTR1): a novel gene in human tumorigenesis. Cytogenet Cell Genet 1999, 84: 211–6.

    CAS  PubMed  Google Scholar 

  53. Prezant TR, Kadioglu P, Melmed S. An intronless homolog of human proto-oncogene hPTTG is expressed in pituitary tumors: Evidence for hPTTG family. J Clin Endocrinol Metab 1999, 84: 1149–52.

    CAS  PubMed  Google Scholar 

  54. Zou H, McGarry TJ, Bernal T, Kirschner MW. Identification of a vertebrate sister-chromatid separation inhibitor involved in transformation and tumorigenesis. Science 1999, 285: 418–22.

    CAS  PubMed  Google Scholar 

  55. Zur A, Brandeis M. Securin degradation is mediated byfzyandfzr, and is required for complete chromatid separation but not for cytokinesis. EMBOJ 2001, 20: 792–801.

    CAS  Google Scholar 

  56. Pei L. Activation of mitogen-activated protein kinase cascade regulates pituitary tumor-transforming gene transactivation function. J Biol Chem 2000, 275: 31191–8.

    CAS  PubMed  Google Scholar 

  57. Wang Z, Melmed S. Pituitary tumor transforming gene (PTTG) transforming and transactivation activity. J Biol Chem 2000, 275: 7459–61.

    CAS  PubMed  Google Scholar 

  58. Kim DS, Franklyn JA, Boelaert K, Eggo MC, Watkinson JC, McCabe CJ. Pituitary tumor transforming gene (PTTG) stimulates thyroid cell proliferation via a vascular endothelial growth factor/kinase insert domain receptor/inhibitor of DNA binding-3 autocrine pathway. J Clin Endocrinol Metab 2006, 91: 4603–11.

    CAS  PubMed  Google Scholar 

  59. Boelaert K, Smith VE, Stratford AL, et al. PTTG and PBF repress the human sodium iodide symporter. Oncogene 2007, 26: 4344–56.

    CAS  PubMed  Google Scholar 

  60. Pei L. Identification of c-myc as a down-stream target for pituitary tumor-transforming gene. J Biol Chem 2001, 276: 8484–91.

    CAS  PubMed  Google Scholar 

  61. Chien W, Pei L. A novel binding factor facilitates nuclear translocation and transcriptional activation function of the pituitary tumor-transforming gene product. J Biol Chem 2000, 275: 19422–7.

    CAS  PubMed  Google Scholar 

  62. Ishikawa H, Heaney AP, Yu R, Horwitz GA, Melmed S. Human pituitary tumor-transforming gene induces angiogenesis. J Clin Endocrinol Metab 2001, 86: 867–74.

    CAS  PubMed  Google Scholar 

  63. McCabe CJ, Boelaert K, Tannahill LA, et al. Vascular endothelial growth factor, its receptor KDR/Flk-1, and pituitary tumor transforming gene in pituitary tumors. J Clin Endocrinol Metab 2002, 87: 4238–44.

    CAS  PubMed  Google Scholar 

  64. Ramos-Morales F, Domínguez A, Romero F, et al. Cell cycle regulated expression and phosphorylation of hpttg proto-oncogene product. Oncogene 2000, 19: 403–9.

    CAS  PubMed  Google Scholar 

  65. Yu R, Ren SG, Horwitz GA, Wang Z, Melmed S. Pituitary tumor transforming gene (PTTG) regulates placental JEG-3 cell division and survival: Evidence from live cell imaging. Mol Endocrinol 2000, 14: 1137–46.

    CAS  PubMed  Google Scholar 

  66. Pei L Pituitary tumor-transforming gene protein associates with ribosomal protein S10 and a novel human homologue of DnaJ in testicular cells. J Biol Chem 1999, 274: 3151–8.

    CAS  PubMed  Google Scholar 

  67. Puri R, Tousson A, Chen L, Kakar SS. Molecular cloning of pituitary tumor transforming gene 1 from ovarian tumors and its expression in tumors. Cancer Lett 2001, 163: 131–9.

    CAS  PubMed  Google Scholar 

  68. Heaney AP, Singson R, McCabe CJ, Nelson V, Nakashima M, Melmed S. Expression of pituitary-tumour transforming gene in colorectal tumours. Lancet 2000, 355: 716–9.

    CAS  PubMed  Google Scholar 

  69. Shibata Y, Haruki N, Kuwabara Y, et al. Expression of PTTG (pituitary tumor transforming gene) in esophageal cancer. Jpn J Clin Oncol 2002, 32: 233–7.

    PubMed  Google Scholar 

  70. Kakar SS, Malik MT. Suppression of lung cancer with siRNA targeting PTTG. Int J Oncol 2006, 29: 387–95.

    CAS  PubMed  Google Scholar 

  71. Cho-Rok J, Yoo J, Jang YJ, et al. Adenovirus-mediated transfer of siRNA against PTTG1 inhibits liver cancer cell growth in vitro and in vivo. Hepatology 2006, 43: 1042–52.

    PubMed  Google Scholar 

  72. Sáez C, Pereda T, Borrero JJ, et al. Expression of hpttg proto-oneogene in lymphoid neoplasias. Oncogene 2002, 21: 8173–7.

    PubMed  Google Scholar 

  73. Tfelt-Hansen J, Yano S, Bandyopadhyay S, Carroll R, Brown EM, Chattopadhyay N. Expression of pituitary tumor transforming gene (PTTG) and its binding protein in human astrocytes and astrocytoma cells: Function and regulation of PTTG in U87 astrocytoma cells. Endocrinology 2004, 145: 4222–31.

    CAS  PubMed  Google Scholar 

  74. Wen C-Y, Nakayama T, Wang A-P, et al. Expression of pituitary tumor transforming gene in human gastric carcinoma. World J Gastroenterol 2004, 10: 481–3.

    CAS  PubMed  Google Scholar 

  75. Kanakis D, Kirches E, Mawrin C, Dietzmann K. Promoter mutations are no major cause of PTTG overexpression in pituitary adenomas. Clin Endocrinol (Oxf) 2003, 58: 151–5.

    CAS  Google Scholar 

  76. Heaney AP, Nelson V, Fernando M, Horwitz G. Transforming events in thyroid tumorigenesis and their association with follicular lesions. J Clin Endocrinol Metab 2001, 86: 5025–32.

    CAS  PubMed  Google Scholar 

  77. Boelaert K, McCabe CJ, Tannahill LA, et al. Pituitary tumor transforming gene and fibroblast growth factor-2 expression: Potential prognostic indicators in differentiated thyroid cancer. J Clin Endocrinol Metab 2003, 88: 2341–7.

    CAS  PubMed  Google Scholar 

  78. Sáez C, Martýnez-Brocca MA, Castilla C, et al. Prognostic significance of human pituitary tumor-transforming gene immunohistochemical expression in differentiated thyroid cancer. J Clin Endocrinol Metab 2006, 91: 1404–9.

    PubMed  Google Scholar 

  79. Stratford AL, Boelaert K, Tannahill LA, et al. Pituitary tumor transforming gene binding factor: A novel transforming gene in thyroid tumorigenesis. J Clin Endocrinol Metab 2005, 90: 4341–9.

    CAS  PubMed  Google Scholar 

  80. Cooper GM. Oncogenes. 2nd ed. Boston: Jones and Bartlett Publishers, 1995.

    Google Scholar 

  81. Kubo K, Yoshimoto K, Yokogoshi Y, Tsuyuguchi M, Saito S. Loss of heterozygosity on chromosome-1P in thyroid adenoma and medullary carcinoma, but not in papillary carcinoma. Jpn J Cancer Res 1991, 82: 1097–103.

    CAS  PubMed  Google Scholar 

  82. Zedenius J, Wallin G, Svensson A, et al. Alleotyping of follicular thyroid-tumours. Hum Genet 1995, 96: 27–32.

    CAS  PubMed  Google Scholar 

  83. Grebe SK, McIver B, Hay ID, et al. Frequent loss of heterozygosity on chromosomes 3p and 17p without VHL or p53 mutations suggests involvement of unidentified tumor suppressor genes in follicular thyroid carcinoma. J Clin Endocrinol Metab 1997, 82: 3684–91.

    CAS  PubMed  Google Scholar 

  84. Marsh DJ, Zheng Z, Zedenius J, et al. Differential loss of heterozygosity in the region of the Cowden locus within 10q22-23 in follicular thyroid adenomas and carcinomas. Cancer Res 1997, 57: 500–3.

    CAS  PubMed  Google Scholar 

  85. Tung WS, Shevlin DW, Kaleem Z, Tribune DJ, Wells SA, Goodfellow PJ. Allelotype of follicular thyroid carcinomas reveals genetic instability consistent with frequent nondisjunctional chromosomal loss. Genes Chromosomes Cancer 1997, 19: 43–51.

    CAS  PubMed  Google Scholar 

  86. Ward LS, Brenta G, Medvedovic M, Fagin JA. Studies of allelic loss in thyroid tumors reveal major differences in chromosomal instability between papillary and follicular carcinomas. J Clin Endocrinol Metab 1998, 83: 525–30.

    CAS  PubMed  Google Scholar 

  87. Joensuu H, Klemi P, Eerola E. DNA aneuploidy in follicular adenomas of the thyroid-gland. Am J Pathol 1996, 124: 373–6.

    Google Scholar 

  88. Joensuu H, Klemi PJ. Comparison of nuclear-DNA content in primary and metastatic differentiated thyroid-carcinoma. Am J Clin Pathol 1988, 89: 35–40.

    CAS  PubMed  Google Scholar 

  89. Sturgis CD, Caraway NP, Johnston DA, Sherman SI, Kidd L, Katz RL Image analysis of papillary thyroid carcinoma fine-needle aspirates: significant association between aneuploidy and death from disease. Cancer 1999, 87: 155–60.

    CAS  PubMed  Google Scholar 

  90. Nasmyth K, Uhlmann F, Buonomo S, Toth A, Rabitsch K. The roles of proteolysis in separating sister chromatids during mitosis and meiosis. Cell Biol Int 2001, 25: A4.

    Google Scholar 

  91. Nasmyth K. Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis. Annu Rev Genet 2001, 35: 673–745.

    CAS  PubMed  Google Scholar 

  92. Nasmyth K. Segregating sister genomes: The molecular biology of chromosome separation. Science 2002, 297: 559–65.

    CAS  PubMed  Google Scholar 

  93. Yu R, Heaney AP, Lu W, Chen J, Melmed S. Pituitary tumor transforming gene causes aneuploidy and p53-dependent and p53-independent apoptosis. J Biol Chem 2000, 275: 36502–5.

    CAS  PubMed  Google Scholar 

  94. Yu R, Lu W, Chen J, McCabe CJ, Melmed S. Overexpressed pituitary tumor-transforming gene causes aneuploidy in live human cells. Endocrinology 2003, 144: 4991–8.

    CAS  PubMed  Google Scholar 

  95. Basik M, Stoler DL, Kontzoglou KC, Rodriguez-Bigas MA, Petrelli NJ, Anderson GR. Genomic instability in sporadic colorectal cancer quantitated by inter-simple sequence repeat PCR analysis. Genes Chromosomes Cancer 1997, 18: 19–29.

    CAS  PubMed  Google Scholar 

  96. Kim D, Pemberton H, Stratford AL, et al. Pituitary tumour transforming gene (PTTG) induces genetic instability in thyroid cells. Oncogene 2005, 24: 4861–6.

    CAS  PubMed  Google Scholar 

  97. Hollstein M, Rice K, Greenblatt MS, et al. Database of p53 gene somatic mutations in human tumors and cell-lines. Nucleic Acids Res 1994, 22: 3551–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Levine AJ. p53, the cellular gatekeeper for growth and division. Cell 1997, 88: 323–31.

    CAS  PubMed  Google Scholar 

  99. Vousden KH. p53: Death star. Cell 2000, 103: 691–4.

    CAS  PubMed  Google Scholar 

  100. Bernal JA, Luna R, Espina A, et al. Human securin interacts with p53 and modulates p53-mediated transcriptional activity and apoptosis. Nat Genet 2002, 32: 306–11.

    CAS  PubMed  Google Scholar 

  101. Hamid T, Kakar SS. PTTG/securin activates expression of p53 and modulates its function. Mol Cancer 2004, 3: 18.

    PubMed Central  PubMed  Google Scholar 

  102. Cho-Rok J, Yoo J, Jang YJ, et al. Adenovirus-mediated transfer of siRNA against PTTG1 inhibits liver cancer cell growth in vitro and in vivo. Hepatology 2006, 43: 1042–52.

    PubMed  Google Scholar 

  103. Zhou Y, Mehta KR, Choi AP, Scolavino S, Zhang X. DNA damage-induced inhibition of securin expression is mediated by p53. J Biol Chem 2003, 278: 462–70.

    CAS  PubMed  Google Scholar 

  104. Kho PS, Wang Z, Zhuang L, et al. p53-regulated transcriptional program associated with genotoxic stress-induced apoptosis. J Biol Chem 2004, 279: 21183–92.

    CAS  PubMed  Google Scholar 

  105. Chiu S-J, Hsu T-S, Chao J-I. Opposing securin and p53 protein expression in the oxaliplatin-induced cytotoxicity of human colorectal cancer cells. Toxicol Lett 2006, 167: 122–30.

    CAS  PubMed  Google Scholar 

  106. Romero F, Multon MC, Ramos-Morales F, et al. Human securin, hPTTG, is associated with Ku heterodimer, the regulatory subunit of the DNA-dependent protein kinase. Nucleic Acids Res 2011, 29: 1300–7.

    Google Scholar 

  107. Kim DS, Franklyn JA, Smith VE, et al. Securin induces genetic instability in colorectal cancer by inhibiting double-stranded DNA repair activity. Carcinogenesis 2007, 28: 749–59.

    CAS  PubMed  Google Scholar 

  108. Heaney AP, Horwitz GA, Wang ZY, Singson R, Melmed S. Early involvement of estrogen-induced pituitary tumor transforming gene and fibroblast growth factor expression in prolactinoma pathogenesis. Nat Med 1999, 5: 1317–21.

    CAS  PubMed  Google Scholar 

  109. Clark OH, Gerend PL, Davis M, Goretzki PE, Hoffman PG Jr. Estrogen and thyroid-stimulating hormone (TSH) receptors in neoplastic and non-neoplastic human thyroid-tissue. J Surg Res 1985, 38: 89–96.

    CAS  PubMed  Google Scholar 

  110. McTiernan AM, Weiss NS, Daling JR. Incidence of thyroid-cancer in women in relation to reproductive and hormonal factors. Am J Epidemiol 1984, 120: 423–35.

    CAS  PubMed  Google Scholar 

  111. Preston-Martin S, Bernstein L, Pike MC, Maldonado AA, Henderson BE. Thyroid cancer among young women related to prior thyroid disease and pregnancy history. Br J Cancer 1987, 55: 191–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Preston-Martin S, Jin F, Duda MJ, Mack WJ. A case-control study of thyroid-cancer in women under age 55 in Shanghai (People’s Republic of China). Cancer Causes Control 1993, 4: 431–40.

    CAS  PubMed  Google Scholar 

  113. Heaney AP, Fernando M, Melmed S. Functional role of estrogen in pituitary tumor pathogenesis. J Clin Invest 2002, 109: 277–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Murai N, Ueba T, Takahashi JA, et al. Apoptosis of human glioma cells in vitro and in vivo induced by a neutralizing antibody against human basic fibroblast growth factor. J Neurosurg 1996, 85: 1072–7.

    CAS  PubMed  Google Scholar 

  115. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N. Vascular endothelial growth-factor is a secreted angiogenic mitogen. Science 1989, 246: 1306–9.

    CAS  PubMed  Google Scholar 

  116. Plouët J, Schilling J, Gospodarowicz D. Isolation and characterization of a newly identified endothelial-cell mitogen produced by ATT-20 cells. EmboJ 1989, 8: 3801–6.

    Google Scholar 

  117. Pepper MS, Montesano R. Proteolytic balance and capillary morphogenesis. Cell Differ Dev 1990, 32: 319–28.

    CAS  PubMed  Google Scholar 

  118. Goldenberg JD, Portugal LG, Wenig BL, Ferrer K, Wu JC, Sabnani J. Well differentiated thyroid carcinomas: p53 mutation status and microvessel density. Head Neck-J Sci Spec 1998, 20: 152–8.

    CAS  Google Scholar 

  119. Akslen LA, Livolsi VA. Increased angiogenesis in papillary thyroid carcinoma but lack of prognostic importance. Hum Pathol 2000, 31: 439–42.

    CAS  PubMed  Google Scholar 

  120. Turner HE, Harris AL, Melmed S, Wass JA. Angiogenesis in endocrine tumors. Endocr Rev 2003, 24: 600–32.

    CAS  PubMed  Google Scholar 

  121. Soh EY, Duh QY, Sobhi SA, et al. Vascular endothelial growth factor expression is higher in differentiated thyroid cancer than normal or benign thyroid. J Clin Endocrinol Metab 1997, 82: 3741–7.

    CAS  PubMed  Google Scholar 

  122. Bunone G, Vigneri P, Mariani L, et al. Expression of angiogenesis stimulators and inhibitors in human thyroid tumors and correlation with clinical pathological features. Am J Pathol 1999, 155: 1967–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Klein M, Vignaud JM, Hennequin V, et al. Increased expression of the vascular endothelial growth factor is a pejorative prognosis marker in papillary thyroid carcinoma. J Clin Endocrinol Metab 2001, 86: 656–8.

    CAS  PubMed  Google Scholar 

  124. Ying H, Furuya F, Zhao L, et al. Aberrant accumulation of PTTG1 induced by a mutated thyroid hormone beta receptor inhibits mitotic progression. J Clin Invest 2006, 116: 2972–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Kim CS, Ying H, Willingham MC, Cheng SY. The pituitary tumor-transforming gene promotes angiogenesis in a mouse model of follicular thyroid cancer. Carcinogenesis 2007, 28: 932–9.

    CAS  PubMed  Google Scholar 

  126. Thompson AD 3rd, Kakar SS. Insulin and IGF-1 regulate the expression of the pituitary tumor transforming gene (PTTG) in breast tumor cells. FEBS Lett 2005, 579: 3195–200.

    CAS  PubMed  Google Scholar 

  127. Chamaon K, Kirches E, Kanakis D, Braeuninger S, Dietzmann K, Mawrin C. Regulation of the pituitary tumor transforming gene by insulin-like-growth factor-I and insulin differs between malignant and non-neoplastic astrocytes. Biochem Biophys Res Commun 2005, 331: 86–92.

    CAS  PubMed  Google Scholar 

  128. Chamaon K, Kanakis D, Mawrin C, Dietzmann K, Kirches E. Transcripts of PTTG and growth factors bFGF and IGF-1 are correlated in pituitary adenomas. Exp Clin Endocrinol Diabetes 2010, 118: 121–6.

    CAS  PubMed  Google Scholar 

  129. Fagin JA. Molecular genetics of tumors of thyroid follicular cells. In: Braverman LE, Utiger RD eds. The Thyroid. Philadelphia: Lippincott, Williams & Wilkins, 2005.

    Google Scholar 

  130. Patel VA, Logan A, Watkinson JC, et al. Isolation and characterization of human thyroid endothelial cells. Am J Physiol Endocrinol Metab 2003, 284: E168–76.

    CAS  PubMed  Google Scholar 

  131. Kim DS, Franklyn JA, Stratford AL, et al. Pituitary tumor-transforming gene regulates multiple downstream angiogenic genes in thyroid cancer. J Clin Endocrinol Metab 2006, 91: 1119–28.

    CAS  PubMed  Google Scholar 

  132. Arturi F, Russo D, Schlumberger M, et al. Iodide symporter gene expression in human thyroid tumors. J Clin Endocrinol Metab 1998, 83: 2493–6.

    CAS  PubMed  Google Scholar 

  133. Arturi F, Russo D, Bidart JM, Scarpelli D, Schlumberger M, Filetti S. Expression pattern of the pendrin and sodium/iodide symporter genes in human thyroid carcinoma cell lines and human thyroid tumors. Eur J Endocrinol 2001, 145: 129–35.

    CAS  PubMed  Google Scholar 

  134. Lazar V, Bidart JM, Caillou B, et al. Expression of the Na+/I- symporter gene in human thyroid tumors: A comparison study with other thyroid-specific genes. J Clin Endocrinol Metab 1999, 84: 3228–34.

    CAS  PubMed  Google Scholar 

  135. Cocks HC, Thompson S, Turner FE, et al. Role and regulation of the fibroblast growth factor axis in human thyroid follicular cells. Am J Physiol Endocrinol Metab 2003, 285: E460–9.

    CAS  PubMed  Google Scholar 

  136. Read ML, Lewy GD, Fong JC, et al. Proto-oncogene PBF/PTTG1 IP regulates thyroid cell growth and represses radioiodide treatment. Cancer Res 2011, 71: 6153–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Smith VE, Read ML, Turnell AS, et al. A novel mechanism of sodium iodide symporter repression in differentiated thyroid cancer. J Cell Sci 2009, 122: 3393–402.

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Chintharlapalli S, Papineni S, Lee SO, et al. Inhibition of pituitary tumor-transforming gene-1 in thyroid cancer cells by drugs that decrease specificity proteins. Mol Carcinog 2011, 50: 655–67.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. McCabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewy, G.D., Sharma, N., Seed, R.I. et al. The pituitary tumor transforming gene in thyroid cancer. J Endocrinol Invest 35, 425–433 (2012). https://doi.org/10.3275/8332

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3275/8332

Key-words

Navigation