Skip to main content
Log in

Triglycerides are independently associated with albuminuria in Taiwanese Type 2 diabetic patients

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Background: Lipid abnormalities in albuminuria in patients with Type 2 diabetes differ by race. Aim: To perform a biochemical investigation of association between dyslipidemia and albuminuria in Type 2 diabetes in Taiwan. Materials/subjects and methods: We recruited a total of 2349 Chinese patients with Type 2 diabetes from two medical centers in Taiwan over a 1-yr period. Patients were categorized into those with normoalbuminuria, microalbuminuria, and macro-albuminuria defined as albumin-to-creatinine ratio of <30, 30–299, and ≥300 µg/mg. We then investigated the significance of the clinical and biochemical parameters and risk of albuminuria. Results: We found significant differences in total cholesterol (TC) between those with normoalbuminuria and micro/macroalbuminuria, no significant difference in LDL cholesterol (LDL-C) among the 3 subgroups, a significant difference in HDL cholesterol (HDL-C) between those with normoalbuminuria and macroalbuminuria, and significant increases in triglyceride (TG) paralleling increases in albuminuria. TG was found by logistic regression to be significantly associated with micro/macroalbuminuria in our unadjusted model [odds ratio (OR) = 1.859 (1.596∼2.165)], and remained significant after adjusting for various confounders [OR = 1.415 (1.123∼1.784)]. Increases in albuminuria paralleled quartile increases in serum TG (p<0.001). Conclusions: We conclude that TG increases significantly throughout the 3 stages of albuminuria in Taiwanese Type 2 diabetic patients, but TC, HDL-C, and LDL-C do not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atkins RC. The epidemiology of chronic kidney disease. Kidney Int Suppl 2005, 94: S14–8.

    Article  PubMed  Google Scholar 

  2. Dinneen SF, Gerstein HC. TThe association of microalbuminuria and mortality in non-insulin-dependent diabetes mellitus. A systematic overview of the literature. Arch Intern Med 1997, 157: 1413–8.

    Article  PubMed  Google Scholar 

  3. Viberti GC, Hill RD, Jarrett RJ, Argyropoulos A, Mahmud U, Keen H. Microalbuminuria as a predictor of clinical nephropathy in insulin-dependent diabetes mellitus. Lancet 1982, 1: 1430–2.

    Article  PubMed  Google Scholar 

  4. Parving HH, Oxenbøll B, Svendsen PA, Christiansen JS, Andersen AR. Early detection of patients at risk of developing diabetic nephropathy. A longitudinal study of urinary albumin excretion. Acta Endocrinol (Copenh) 1982, 100: 550–5.

    Google Scholar 

  5. Bonnet F, Cooper ME. Potential influence of lipids in diabetic nephropathy: insights from experimental data and clinical studies. Diabetes Metab 2000, 26: 254–64.

    PubMed  Google Scholar 

  6. Wilens SL, Elster SK, Baker JP. Glomerular lipidosis in intercapillary glomerulosclerosis. Ann Intern Med 1951, 34: 592–607.

    Article  PubMed  Google Scholar 

  7. American Diabetes Association. Standards of medical care in diabetes—2007. Diabetes care 2007, 30(Suppl 1): S4–41.

    Article  Google Scholar 

  8. Retnakaran R, Cull CA, Thorne KI, Adler AI, Holman RR; UKPDS Study Group. Risk factors for renal dysfunction in type 2 diabetes: U.K. Prospective Diabetes Study 74. Diabetes 2006, 55: 1832–9.

    Article  PubMed  Google Scholar 

  9. Hashim R, Khalil-ur-Rehman, Ahmed TA, Mushtaq S, Zafar L, Attique M. Microalbumiuria and associated risk factors in type II diabetics. J Coll Physicians Surg Pak 2004, 14: 84–7.

    PubMed  Google Scholar 

  10. Seghieri G, Alviggi L, Caselli P, et al. Serum lipids and lipoproteins in type 2 diabetic patients with persistent microalbuminuria. Diabet Med 1990, 7: 810–4.

    Article  PubMed  Google Scholar 

  11. Parving HH, Lewis JB, Ravid M, Remuzzi G, Hunsicker LG; DEMAND investigators. Prevalence and risk factors for microalbuminuria in a referred cohort of type II diabetic patients: a global perspective. Kidney Int 2006, 69: 2057–63.

    Article  PubMed  Google Scholar 

  12. Kim DM, Ahn CW, Park JS, et al. An implication of hypertriglyceridemia in the progression of diabetic nephropathy in metabolically obese, normal weight patients with type 2 diabetes mellitus in Korea. Diabetes Res Clin Pract 2004, 66(Suppl 1): S169–72.

    Article  PubMed  Google Scholar 

  13. Nelson RG, Knowler WC, Pettitt DJ, Hanson RL, Bennett PH. Incidence and determinants of elevated urinary albumin excretion in Pima Indians with NIDDM. Diabetes Care 1995, 18: 182–7.

    Article  PubMed  Google Scholar 

  14. Gall MA, Hougaard P, Borch-Johnsen K, Parving HH. Risk factors for development of incipient and overt diabetic nephropathy in patients with non-insulin dependent diabetes mellitus: prospective, observational study. BMJ 1997, 314: 783–8.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Bruno G, Merletti F, Biggeri A, et al; Casale Monferrato Study. Progression to overt nephropathy in type 2 diabetes: the Casale Monferrato Study. Diabetes Care 2003, 26: 2150–5.

    Article  PubMed  Google Scholar 

  16. Oue T, Namba M, Nakajima H, et al. Risk factors for the progression of microalbuminuria in Japanese type 2 diabetic patients—a 10 year follow-up study. Diabetes Res Clin Pract 1999, 46: 47–55.

    Article  PubMed  Google Scholar 

  17. Tseng CH. Lipid abnormalities associated with urinary albumin excretion rate in Taiwanese type 2 diabetic patients. Kidney Int 2005, 67: 1547–53.

    Article  PubMed  Google Scholar 

  18. Ma Y, Li Y, Chiriboga DE, et al. Association between carbohydrate intake and serum lipids. J Am Coll Nutr 2006, 25: 155–63.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Hypertriglyceridaemia and vascular risk. Report of a meeting of physicians and scientists, University College London Medical School. Lancet 1993, 342: 781–7.

    Article  Google Scholar 

  20. Fay WP. Plasminogen activator inhibitor 1, fibrin, and the vascular response to injury. Trends Cardiovasc Med 2004, 14: 196–202.

    Article  PubMed  Google Scholar 

  21. Fogo AB. Renal fibrosis: not just PAI-1 in the sky. J Clin Invest 2003, 112: 326–8.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Kamgar M, Nobakhthaghighi N, Shamshirsaz AA, Estacio RO, McFann KK, Schrier RW. Impaired fibrinolytic activity in type II diabetes: correlation with urinary albumin excretion and progression of renal disease. Kidney Int 2006, 69: 1899–903.

    Article  PubMed  Google Scholar 

  23. McNamara JR, Campos H, Ordovas JM, Peterson J, Wilson PW, Schaefer EJ. Effect of gender, age, and lipid status on low density lipoprotein subfraction distribution. Results from the Framingham Offspring Study. Arteriosclerosis 1987, 7: 483–90.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.-C. Hsieh MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tien, KJ., Tu, ST., Chen, HC. et al. Triglycerides are independently associated with albuminuria in Taiwanese Type 2 diabetic patients. J Endocrinol Invest 35, 800–803 (2012). https://doi.org/10.3275/8060

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3275/8060

Key-words

Navigation