Journal of Endocrinological Investigation

, Volume 35, Issue 1, pp 77–81 | Cite as

High intrafamilial variability in autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy: A case study

  • D. Capalbo
  • A. Fusco
  • G. Aloj
  • N. Improda
  • L. Vitiello
  • U. Dianzani
  • C. Betterle
  • M. Salerno
  • C. PignataEmail author
Original Article


Introduction: Autoimmune polyendocrinopathy-candidiasis-ectodermal-dystrophy syndrome (APECED) is a monogenic disease whose phenotype may reveal wide heterogeneity. The reasons of this variability still remain obscure. Patients and methods: Two APECED siblings with identical genotype and extremely different phenotype were compared with regard to exposure to infectious triggers, autoantibodies’ profile, mechanisms of peripheral tolerance, and human leukocyte antigen (HLA) haplotype. The following infectious markers were evaluated: rubella, Epstein Barr virus, cytomegalovirus, toxoplasma, varicella zoster virus, parvovirus B19, herpes simplex virus, and parainfluenza virus. APECED-related autoantibodies were detected by indirect immunofluorescence or complement fixation or enzyme-linked immunosorbent assay or radioimmunoassay. Resistance to Fas-induced apoptosis was evaluated on peripheral blood mononuclear cells (PBMC) activated with phytohemoagglutinin, the number of TCD4+CD25+ regulatory cells (Treg) was evaluated through flow-cytometry and natural killer (NK) activity through Wallac method. Perforin (PRF1) was amplified by PCR and sequenced. Results: No difference was observed between the siblings in common infectious triggers, extent of Fas-induced apoptosis, NK-cell activity and PRF1 sequence, the number of Tregs and HLA haplotypes. Conclusion: Although APECED is a monogenic disease, its expressivity may be extremely different even in the same family. This variability cannot be explained by common triggering infectious agents or functional alterations of mechanisms governing peripheral tolerance.


AIRE APECED infective triggers intrafamilial variability peripheral tolerance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Betterle C, Greggio NA, Volpato M. Autoimmune polyglandular syndrome type 1. J Clin Endocr Metab 1998, 83: 1049–55.PubMedCrossRefGoogle Scholar
  2. 2.
    Mathis D, Benoist C. Aire. Annu Rev Immunol 2009, 27: 287–312.PubMedCrossRefGoogle Scholar
  3. 3.
    Gylling M, Tuomi T, Björses P, et al. ss-cell autoantibodies, human leukocyte antigen II alleles, and type 1 diabetes in autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. J Clin Endocrinol Metab 2000, 85: 4434–40.PubMedGoogle Scholar
  4. 4.
    Halonen M, Eskelin P, Myhre AG, et al. AIRE mutations and human leukocyte antigen genotypes as determinants of the autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy phenotype. J Clin Endocrinol Metab 2002, 87: 2568–74.PubMedCrossRefGoogle Scholar
  5. 5.
    Kekäläinen E, Tuovinen H, Joensuu J, et al. A defect of regulatory T cells in patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. J Immunol 2007, 178: 1208–15.PubMedGoogle Scholar
  6. 6.
    Capalbo D, Elefante A, Spagnuolo MI, et al. Posterior reversible encephalopathy syndrome in a child during an accelerated phase of a severe APECED phenotype due to an uncommon mutation of AIRE. Clin Endocrinol (Oxf) 2008, 69: 511–3.CrossRefGoogle Scholar
  7. 7.
    Stolarski B, Pronicka E, Korniszewski L, et al. Molecular background of polyendocrinopathy-candidiasis-ectodermal dystrophy syndrome in a Polish population: novel AIRE mutations and an estimate of disease prevalence. Clin Genet 2006, 70: 348–54.PubMedCrossRefGoogle Scholar
  8. 8.
    Fiore M, Pera C, Delfino L, Scotese I, Ferrara GB, Pignata C. DNA typing of DQ and DR alleles in IgA-deficient subjects. Eur J Immunogenet 1995, 22: 403–11.PubMedCrossRefGoogle Scholar
  9. 9.
    Tanaka H, Perez MS, Powell M, et al. Steroid 21-hydroxylase autoantibodies: measurements with a new immunoprecipitation assay. J Clin Endocrinol Metab 1997, 82: 1440–6.PubMedGoogle Scholar
  10. 10.
    Chen S, Sawicka J, Betterle C, et al. Autoantibodies to steroidogenic enzymes in autoimmune polyglandular syndrome, Addison’s disease, and premature ovarian failure. J Clin Endocrinol Metab 1996, 81: 1871–6.PubMedGoogle Scholar
  11. 11.
    Dal Pra C, Chen S, Betterle C, et al. Autoantibodies to human tryptophan hydroxylase and aromatic L-amino acid decarboxylase. Eur J Endocrinol 2004, 150: 313–21.CrossRefGoogle Scholar
  12. 12.
    DeFranco S, Bonissoni S, Cerutti F, et al. Defective function of Fas in patients with type 1 diabetes associated with other autoimmune diseases. Diabetes 2001, 50: 483–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Pignata C, Fiore M, De Filippo S, et al. Apoptosis as a mechanism of peripheral blood mononuclear cell death following measles and varicella-zoster virus infections in children. Ped Res 1998, 43: 77–83.CrossRefGoogle Scholar
  14. 14.
    Pignata C, Troncone R, Monaco G, et al. Impaired suppressor activity in children affected by coeliac disease. Gut 1985, 26: 285–90.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Perheentupa J. Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. J Clin Endocrinol Metab 2006, 91: 2843–50.PubMedCrossRefGoogle Scholar
  16. 16.
    Wolff AS, Erichsen MM, Meager A, et al. Autoimmune polyendocrine syndrome type 1 in Norway: phenotypic variation, autoantibodies, and novel mutations in the autoimmune regulator gene. J Clin Endocrinol Metab 2007, 92: 595–603.PubMedCrossRefGoogle Scholar
  17. 17.
    Ming JE, Muenke M. Multiple hits during early embryonic development: digenic diseases and holoprosencephaly. Am J Hum Genet 2002, 71: 1017–32.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    von Herrat MG, Dockter J, Oldstone MB. How virus induces a rapid or slow onset insulin-dependent diabetes mellitus in a transgenic model. Immunity 1994, 1: 231–42.CrossRefGoogle Scholar
  19. 19.
    Panoutsakopoulou V, Sanchirico ME, Huster KM, et al. Analysis of the relationship between viral infection and autoimmune disease. Immunity 2001, 15: 137–47.PubMedCrossRefGoogle Scholar
  20. 20.
    Chen HD, Fraire AE, Joris I, Welsh RM, Selin LK. Specific history of heterologous virus infections determines anti-viral immunity and immunopathology in the lung. Am J Pathol 2003, 163: 1341–55.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Horwitz MS, Bradley LM, Harbertson J, et al. Diabetes induced by Coxsackie virus: initiation by bystander damage and not molecular mimicry. Nat Med 1998, 4: 781–5.PubMedCrossRefGoogle Scholar
  22. 22.
    Mena I, Fischer C, Gebhard JR, et al. Coxsackievirus infection of the pancreas: evaluation of receptor expression, pathogenesis, and immunopathology. Virology 2000, 271: 276–88.PubMedCrossRefGoogle Scholar
  23. 23.
    Carl PL, Temple BR, Cohen PL. Most nuclear systemic autoantigens are extremely disordered proteins: implications for the etiology of systemic autoimmunity. Arthritis Res Ther 2005, 7: 1360–74.CrossRefGoogle Scholar
  24. 24.
    Pender MP. Infection of autoreactive B lymphocytes with EBV, causing chronic autoimmune diseases. Trends Immunol 2003, 24: 584–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Walker LS, Abbas AK. The enemy within: keeping self-reactive T cells at bay in the periphery. Nat Rev Immunol 2002, 2: 11–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Mathis D, Benoist C. Back to central tolerance. Immunity 2004, 20: 509–16.PubMedCrossRefGoogle Scholar
  27. 27.
    Goodnow CC, Sprent J, Fazekas de St Groth B, Vinuesa CG. Cellular and genetic mechanisms of self tolerance and autoimmunity. Nature 2005, 435: 590–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Orilieri E, Cappellano G, Clementi R, et al. Variations of the perforin gene in patients with type 1 diabetes. Diabetes 2008, 57: 1078–83.PubMedCrossRefGoogle Scholar
  29. 29.
    Cappellano G, Orilieri E, Comi C, et al. Variations of the perforin gene in patients with multiple sclerosis. Genes Immun 2008, 9: 438–44.PubMedCrossRefGoogle Scholar
  30. 30.
    Kuroda N, Mitani T, Takeda N, et al. Development of autoimmunity against transcriptionally unrepressed target antigen in the thymus of Aire-deficient mice. J Immunol 2005, 174: 1862–70.PubMedGoogle Scholar
  31. 31.
    Liston A, Lesage S, Wilson J, Peltonen L, Goodnow CC. Aire regulates negative selection of organ-specific T cells. Nat Immunol 2003, 4: 350–4.PubMedCrossRefGoogle Scholar

Copyright information

© Italian Society of Endocrinology (SIE) 2012

Authors and Affiliations

  • D. Capalbo
    • 1
  • A. Fusco
    • 1
  • G. Aloj
    • 1
  • N. Improda
    • 1
  • L. Vitiello
    • 2
  • U. Dianzani
    • 3
  • C. Betterle
    • 4
  • M. Salerno
    • 1
  • C. Pignata
    • 1
    Email author
  1. 1.Department of Pediatrics‘Federico II’ UniversityNaplesItaly
  2. 2.Department of Cellular and Molecular Biology and Pathology“Federico II” UniversityNaplesItaly
  3. 3.Interdisciplinary Research Center of Autoimmune Diseases“A. Avogadro”, University of Eastern PiedmontNovaraItaly
  4. 4.Division of Endocrinology, Department of Medical and Surgical SciencesUniversity of PaduaPaduaItaly

Personalised recommendations