Skip to main content

Advertisement

Log in

Peripheral bone mineral density in correlation to disease-related predisposing conditions in patients with multiple endocrine neoplasia type 1

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Background and aim: Patients with multiple endocrine neoplasia type 1 (MEN1) often have low bone mineral density (BMD) attributed to primary hyperparathyroidism (pHPT). However, in MEN1 patients, other endocrine dysfunctions and conditions such as hypercortisolism, hypogonadism, and GH deficiency due to pituitary manifestation, and surgery on the upper gastrointestinal tract may affect BMD. Subjects and methods: In 23 patients with MEN1 (10 females, 13 males; 46±12 yr), BMD was determined by quantitative computed tomography at the forearm (pqCT), compared to a reference population and related to different conditions suspected to affect bone metabolism in MEN1. Results: In this cohort, Z-score for trabecular BMD was −0.85±1.18 and for total BMD −1.16±1.04. There was a similar trend towards lower BMD in uncontrolled hyperparathyroidism, hypercortisolism, hypogonadism/GH deficiency and the state after surgery at the upper gastrointestinal tract. Conclusions: These data while confirming previous observations on reduced BMD in patients with MEN1, however, challenge its only or even predominant association with pHPT. Other conditions such as hypercortisolism, somatotrophic/gonadotrophic pituitary insufficiency, and previous upper gastrointestinal surgery seem to be factors contributing to the risk of developing osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Underdahl LO, Woolner LB, Black BM. Multiple endocrine adenomas: report of 8 cases in which the parathyroids, pituitary and pancreatic islets were involved. J Clin Endocrinol Metab 1953, 13: 20–47.

    Article  PubMed  Google Scholar 

  2. Wermer P. Genetic aspects of adenomatosis of endocrine glands. Am J Med 1954, 16: 363–71.

    Article  PubMed  Google Scholar 

  3. Chandrasekharappa SC, Guru SC, Manickam P, et al. Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science 1997, 276: 404–7.

    Article  PubMed  Google Scholar 

  4. Schussheim DH, Skarulis MC, Agarwal SK, et al. Multiple endocrine neoplasia type 1: new clinical and basic findings. Trends Endocrinol Metab 2001, 12: 173–8.

    Article  PubMed  Google Scholar 

  5. Verges B, Boureille F, Goudet P, et al. Pituitary disease in MEN type 1 (MEN1): data from the France-Belgium MEN1 multicenter study. J Clin Endocrinol Metab 2002, 87: 457–65.

    Article  PubMed  Google Scholar 

  6. Koch CA, Pacak K, Chrousos GP. The molecular pathogenesis of hereditary and sporadic adrenocortical and adrenomedullary tumors. J Clin Endocrinol Metab 2002, 87: 5367–84.

    Article  PubMed  Google Scholar 

  7. Langer P, Cupisti K, Bartsch D, et al. Adrenal involvement in multiple endocrine neoplasia type 1. World J Surg 2002, 26: 891–6.

    Article  PubMed  Google Scholar 

  8. Langer P, Kann PH, Fendrich V, et al. Prospective evaluation of imaging procedures for the detection of pancreaticoduodenal endocrine tumors in patients withmultiple endocrine neoplasia type 1. World J Surg 2004, 28: 1317–22.

    Article  PubMed  Google Scholar 

  9. Langer P, Wild A, Schilling T, Nies C, Rothmund M, Bartsch DK Multiple endokrine Neoplasie Typ 1 — Chirurgische Therapie des primären Hyperparathyreoidismus. Chirurg 2004, 75: 900–6.

    Article  PubMed  Google Scholar 

  10. Kann PH, Balakina E, Ivan D, et al. Natural course of small, asymptomatic neuroendocrine pancreatic tumours in multiple endocrine neoplasia type 1: an endoscopic ultrasound imaging study. Endocr Relat Cancer 2006, 13: 1195–202.

    Article  PubMed  Google Scholar 

  11. Schaefer S, Shipotko M, Meyer S, et al. Natural course of small adrenal lesions in multiple endocrine neoplasia type 1: an endoscopic ultrasound imaging study. Eur J Endocrinol 2008, 158: 699–704.

    Article  PubMed  Google Scholar 

  12. Waldmann J, Bartsch DK, Kann PH, Fendrich V, Rothmund M, Langer P. Adrenal involvement in multiple endocrine neoplasia type 1: results of 7 years prospective screening. Langenbecks Arch Surg 2007, 392: 437–43.

    Article  PubMed  Google Scholar 

  13. Waldmann J, Fendrich V, Habbe N, et al. Screening of patients with multiple endocrine neoplasia type 1 (MEN-1): a critical analysis of its value. World J Surg 2009, 33: 1208–18.

    Article  PubMed  Google Scholar 

  14. Burgess JR, David R, Greenaway TM, Parameswaran V, Shepherd JJ. Osteoporosis in multiple endocrine neoplasia type 1: severity, clinical significance, relationship to primary hyperparathyroidism, and response to parathyroidectomy. Arch Surg 1999, 134: 1119–23.

    Article  PubMed  Google Scholar 

  15. Brandi ML, Gagel RF, Angeli A, et al. Guidelines for diagnosis and therapy of MEN type 1 and type 2. J Clin Endocrinol Metab 2001, 86: 5658–71.

    Article  PubMed  Google Scholar 

  16. Bilezikian JP, Silverberg SJ, Shane E, Parisien M, Dempster DW. Characterization and evaluation of asymptomatic primary hyperparathyroidism. J Bone Miner Res 1991, 6: S85–9.

    Article  PubMed  Google Scholar 

  17. Minisola S, Rosso R, Romagnoli E, et al. Trabecular bone mineral density in primary hyperparathyroidism: relationship to clinical presentation and biomarkers of skeletal turnover. Bone Miner 1993, 20: 113–23.

    Article  PubMed  Google Scholar 

  18. Silverberg SJ, Gartenberg F, Jacobs TP, et al. Increased bone mineral density after parathyroidectomy in pHPT. J Clin Endocrinol Metab 1995, 80: 729–34.

    PubMed  Google Scholar 

  19. Christiansen P, Steiniche T, Brixen K, et al. Primary hyperparathyroidism: whole-body bone mineral density in surgically treated Danish patients: a three-year fol low-up study. Bone 1999, 25: 597–602.

    Article  PubMed  Google Scholar 

  20. Vestergaard P, Mollerup CL, Frøkjaer VG, Christiansen P, Blichert-Toft M, Mosekilde L. Cohort study of risk of fracture before and after surgery for primary hyperparathyroidism. BMJ 2000, 321: 598–602.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Khosla S, Melton J 3rd. Fracture risk in primary hyperparathyroidism. J Bone Miner Res 2002, 17(Suppl 2): N103–7.

    PubMed  Google Scholar 

  22. Lourenço DM Jr, Toledo RA, Mackowiak II, et al. Multiple endocrine neoplasia type 1 in Brazil: MEN1 founding mutation, clinical features, and bone mineral density profile. Eur J Endocrinol 2008, 159: 259–74.

    Article  PubMed  Google Scholar 

  23. Kann PH. Clinical effects of growth hormone on bone: a review. Aging Male 2004, 7: 290–6.

    Article  PubMed  Google Scholar 

  24. Arwert LI, Roos JC, Lips P, Twisk JW, Manoliu RA, Drent ML. Effects of 10 years of growth hormone (GH) replacement therapy in adult GH-deficient men. Clin Endocrinol (Oxf) 2005, 63: 310–6.

    Article  Google Scholar 

  25. Bartsch DK, Fendrich V, Langer P, Celik I, Kann PH, Rothmund M. Outcome of duodenopancreatic resections in patients with multiple endocrine neoplasia type 1. Ann Surg 2005, 242: 757–64.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Schneider P, Butz S, Allolio B, et al. Multicenter German reference data base for peripheral quantitative computer tomography. Technol Health Care 1995, 3: 69–73.

    PubMed  Google Scholar 

  27. Schaefer S, Boegershausen N, Meyer S, Ivan D, Schepelmann K, Kann PH. Hypothalamic-pituitary insufficiency following infectious disease of the central nervous system. Eur J Endocrinol 2008, 158: 3–9.

    Article  PubMed  Google Scholar 

  28. Müller OA, Emons G, Fahlbusch R. Hormoninaktive Tumoren und Hypophyseninsuffizienz. In: Lehnert H ed. Rationelle Diagnostik und Therapie in Endokrinologie, Diabetologie und Stoffwechsel. 2nd ed. Stuttgart: Georg Thieme Verlag KG. 2003, 23.

    Google Scholar 

  29. Aimaretti G, Baffoni C, DiVito L, et al. Comparisons among old and new provocative tests of GH secretion in 178 normal adults. Eur J Endocrinol 2000, 142: 347–52.

    Article  PubMed  Google Scholar 

  30. Ghigo E, Aimaretti G, Corneli G. Diagnosis of adult GH deficiency. Growth Horm IGF Res 2008, 18: 1–16.

    Article  PubMed  Google Scholar 

  31. Tobias JH, Compston JE. Does estrogen stimulate osteoblast function in postmenopausal women? Bone 1999, 24: 121–4.

    Article  PubMed  Google Scholar 

  32. Khosla S. Update on estrogens and the skeleton. J Clin Endocrinol Metab 2010, 95: 3569–77.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Ziegler R, Scheidt-Nave C, Scharla S. Pathophysiology of osteoporosis: unresolved problems and new insights. J Nutr 1995, 125 (7 Suppl): 2033S–7S.

    PubMed  Google Scholar 

  34. Alibhai SM, Gogov S, Allibhai Z. Long-term side effects of androgen deprivation therapy in men with non-metastatic prostate cancer: a systematic literature review. Crit Rev Oncol Hematol 2006, 60: 201–15.

    Article  PubMed  Google Scholar 

  35. Scane AC, Francis RM, Sutcliffe AM, Francis MJ, Rawlings DJ, Chapple CL. Case-control study of the pathogenesis and sequelae of symptomatic vertebral fractures in men. Osteoporosis Int 1999, 9: 91–7.

    Article  Google Scholar 

  36. de Vernejoul MC, Cohen Solal M. Estrogens, androgens, and osteoporosis in men. Ann Endocrinol 2003, 64: 137–40.

    Google Scholar 

  37. Kann P, Piepkorn B, Schehler B, et al. Effect of long-term treatment with GH on bone metabolism, bone mineral density and bone elasticity in GH-deficient adults. Clin Endocrinol 1998, 48: 561–8.

    Article  Google Scholar 

  38. Ohlsson C, Bengtsson BA, Isaksson OG, Andreassen TT, Slootweg MC. Growth hormone and bone. Endocr Rev 1998, 10: 55–79.

    Google Scholar 

  39. Amato G, Carella C, Fazio S, et al. Body composition, bone metabolism, and heart structure and function in growth hormone (GH)-deficient adults before and after GH replacement therapy at low doses. J Clin Endocrinol Metab 1993, 77: 1671–6.

    PubMed  Google Scholar 

  40. Sartorio A, Conti A, Monzani M. New markers of bone and collagen turnover in children and adults with growth hormone deficiency. Postgraduate Med J 1993, 69: 846–50.

    Article  Google Scholar 

  41. Amato G, Izzo G, La Montagna G, Bellastella A. Low dose recombinant human growth hormone normalizes bone metabolism and cortical bone density and improves trabecular bone density in growth hormone deficient adults without causing adverse effects. Clin Endocrinol 1996, 45: 27–32.

    Article  Google Scholar 

  42. Elgindy N, Grunditz, R, Thoren M, Degerblad M, Sjöberg HE, Ringertz H. Longterm follow-up of metacarpal cortical thickness and bone mineral density in panhypopituitarism. Radiol Diag 1991, 32: 326–30.

    Google Scholar 

  43. Kaufman JM, Taelman P, Vermeulen A, Vandeweghe M. Bone mineral status in growth hormone deficient males with isolated and multiple pituitary deficiencies of childhood onset. J Clin Endocrinol Metab 1992, 74: 118–23.

    PubMed  Google Scholar 

  44. Bing-You RG, Denis MC, Rosen CJ. Low bone mineral density in adults with previous hypothalamic-pituitary tumors: correlations with serum growth hormone response to GH-releasing hormone, insulin-like growth factor I, and IGF binding protein 3. Calcif Tissue Int 1993, 52: 183–7.

    Article  PubMed  Google Scholar 

  45. Rosen T, Hansson T, Granhed H, Szucs J, Bengtsson B-A. Reduced bone mineral content in adult patients with growth hormone deficiency. Acta Endocrinol (Copenh) 1993, 129: 201–6.

    Google Scholar 

  46. De Boer H, Blok GJ, van Lingen A, Teule GJ, Lips P, van der Veen EA. Consequences of childhood-onset growth hormone deficiency for adult bone mass. J Bone Miner Res 1994, 9: 1319–26.

    Article  PubMed  Google Scholar 

  47. Holmes SJ, Economou G, Whitehouse RW, Adams JE, Shalet SM. Reduced bone mineral density in patients with adult-onset growth hormone deficiency. J Clin Endocrinol Metab 1994, 78: 669–74.

    PubMed  Google Scholar 

  48. Kann P, Piepkorn B, Schehler B, et al. Replacement therapy with recombinant human growth hormone (GH) in GH-deficient adults: effects on bone metabolism and bone mineral density in a 2-year prospective study. Endocrinol Metab 1995, 2: 103–10.

    Google Scholar 

  49. Wuster C, Slenczka E, Ziegler R. Increased prevalence of osteoporosis and arteriosclerosis in conventionally substituted anterior pituitary insufficiency: need for additional growth hormone substitution? Klin Wochenschr 1991, 69: 769–73.

    Article  PubMed  Google Scholar 

  50. Rosen T, Wilhelmsen L, Landin-Wilhelmsen K, et al. Increased fracture rate in adults with growth hormone deficiency. Endocrinol Metab 1996, 3 (Suppl): 121.

    Google Scholar 

  51. Wüster C, Abs R, Bengtsson BA, et al. KIMS Study Group and the KIMS International Board. Pharmacia & Upjohn International Metabolic Database. The influence of growth hormone deficiency, growth hormone replacement therapy, and other aspects of hypopituitarism on fracture rate and bone mineral density. J Bone Miner Res 2001, 16: 398–405.

    Article  PubMed  Google Scholar 

  52. Degerblad M, Elgindy N, Hall K, Sjöberg HE, Thorén M. Potent effect of recombinant growth hormone on bone mineral density and body composition in adults with panhypopituitarism. Acta Endocrinol (Copenh) 1992, 126: 387–93.

    Google Scholar 

  53. Vandeweghe M, Taelman P, Kaufman JM. Short and long-term effects of growth hormone treatment on bone turnover and bone mineral content in adult growth hormone-deficient males. Clin Endocrinol (Oxf) 1993, 39: 409–15.

    Article  Google Scholar 

  54. Beshyah SA, Thomas E, Kyd P, Sharp P, Fairney A, Johnston DG. The effect of growth hormone replacement therapy in hypopituitary adults on calcium and bone metabolism. Clin Endocrinol 1994, 40: 383–91.

    Article  Google Scholar 

  55. Balducci R, Toscano V, Pasquino AM, et al. Bone turnover and bone mineral density in young adult patients with panhypopituitarism before and after long-term growth hormone therapy. Eur J Endocrinol 1995, 132: 42–6.

    Article  PubMed  Google Scholar 

  56. Beshyah SA, Kyd P, Thomas E, Fairney A, Johnston DG. The effects of prolonged growth hormone replacement on bone metabolism and bone mineral density in hypopituitary adults. Clin Endocrinol 1995, 42: 249–54.

    Article  Google Scholar 

  57. Hansen TB, Brixen K, Vahl N, et al. Effects of 12 months of growth hormone (GH) treatment on calciotropic hormones, calcium homeostasis, and bone metabolism in adults with acquired GH deficiency: a double blind, randomized, placebo-controlled study. J Clin Endocrinol Metab 1996, 81: 3352–9.

    PubMed  Google Scholar 

  58. Ahmad AM, Thomas J, Clewes A, et al. Effects of growth hormone replacement on parathyroid hormone sensitivity and bone mineral metabolism. J Clin Endocrinol Metab 2003, 88: 2860–8.

    Article  PubMed  Google Scholar 

  59. Degerblad M, Bengtsson BA, Bramnert M, et al. Reduced bone mineral density in adults with growth hormone (GH) deficiency: increased bone turnover during 12 months of G H substitution therapy. Eur J Endocrinol 1995, 133: 180–8.

    Article  PubMed  Google Scholar 

  60. Holmes SJ, Whitehouse RW, Swindell R, Economou G, Adams JE, Shalet SM. Effect of growth hormone replacement on bone mass in adults with adult onset growth hormone deficiency. Clin Endocrinol (Oxf) 1995, 42: 627–33.

    Article  Google Scholar 

  61. Baum HB, Biller BM, Finkelstein JS, et al. Effects of physiologic growth hormone therapy on bone density and body composition in patients with adult-onset growth hormone deficiency. A randomized, placebo-controlled trial. Ann Intern Med 1996, 125: 883–90.

    Article  PubMed  Google Scholar 

  62. Finkenstedt G, Gasser RW, Hofle G, Watfah C, Fridrich L. Effects of growth hormone (GH) replacement on bone metabolism and mineral density in adult onset of GH deficiency: results of a double-blind placebo-controlled study with open follow-up. Eur J Endocrinol 1997, 136: 282–9.

    Article  PubMed  Google Scholar 

  63. Gómez JM, Gómez N, Fiter J, Soler J. Effects of long-term treatment with GH in the bone mineral density of adults with hypopituitarism and GH deficiency and after discontinuation of GH replacement. Horm Metab Res 2000, 32: 66–70.

    Article  PubMed  Google Scholar 

  64. Abrahamsen B, Hangaard J, Horn HC, et al. Evaluation of the optimum dose of growth hormone (GH) for restoring bone mass in adult-onset GH deficiency: results from two 12-month randomized studies. Clin Endocrinol 2002, 57: 273–81.

    Article  Google Scholar 

  65. Bex M, Abs R, Maiter D, Beckers A, Lamberigts G, Bouillon R. The effects of growth hormone replacement therapy on bone metabolism in adult-onset growth hormone deficiency: a 2-year open randomized controlled multicenter trial. J Bone Miner Res 2002, 17: 1081–94.

    Article  PubMed  Google Scholar 

  66. Sneppen SB, Hoeck HC, Kollerup G, Sørensen OH, Laurberg P, Feldt-Rasmussen U. Bone mineral content and bone metabolism during physiological GH treatment in GH-deficient adults — an 18-month randomised, placebo-controlled, double blinded trial. Eur J Endocrinol 2002, 146: 187–95.

    Article  PubMed  Google Scholar 

  67. Fassbender WJ, Brabant G, Buchfelder M, et al. Treatment of proven growth hormone deficiency in adults with recombinant human growth hormone according to evidence-based criteria. Deut Med Wochenschr 2005, 130: 2589–95.

    Article  Google Scholar 

  68. Kann PH. Growth hormone in anti-aging medicine: a critical review. Aging Male 2003, 6: 257–63.

    Article  PubMed  Google Scholar 

  69. Thorner MO. Statement by the Growth Hormone Research Society on the GH/IGF-I axis in extending health span. J Gerontol A Biol Sci Med Sci 2009, 64: 1039–44.

    Article  PubMed  Google Scholar 

  70. Canalis E, Bilezikian JP, Angeli A, Giustina A. Perspectives on glucocorticoid-induced osteoporosis. Bone 2004, 34: 593–8.

    Article  PubMed  Google Scholar 

  71. Cohen D, Adachi JD. The treatment of glucocorticoid-induced osteoporosis. J Steroid Biochem Mol Biol 2004, 88: 337–49.

    Article  PubMed  Google Scholar 

  72. Mancini T, Doga M, Mazziotti G, Giustina A. Cushing’s syndrome and bone. Pituitary 2004, 7: 243–6.

    Article  Google Scholar 

  73. Minetto M, Reimondo G, Osella G, Ventura M, Angeli A, Terzolo M. Bone loss is more severe in primary adrenal than in pituitary-dependent Cushing’s syndrome. Osteoporosis Int 2004, 15: 855–61.

    Article  Google Scholar 

  74. Kann PH. Secondary osteoporosis in endocrine diseases. Dtsch Med Wochenschr 2005, 130: 165–70.

    Article  PubMed  Google Scholar 

  75. Hofbauer LC, Rauner M. Minireview: live and let die: molecular effects of glucocorticoids on bone cells. Mol Endocrinol 2009, 23: 1525–31.

    Article  PubMed  Google Scholar 

  76. van Cromphaut SJ, Stockmans I, Torrekens S, Van Herck E, Carmeliet G, Bouillon R. Duodenal calcium absorption in dexamethasone-treated mice: functional and molecular aspects. Arch Biochem Biophys 2007, 460: 300–5.

    Article  PubMed  Google Scholar 

  77. Huybers S, Apostolaki M, van der Eerden BC, et al. Murine TNF(DeltaARE) Crohn’s disease model displays diminished expression of intestinal Ca2+ transporters. Inflamm Bowel Dis 2008, 14: 803–11.

    Article  PubMed  Google Scholar 

  78. Thieler S, Schölmerich J. Gastrointestinal diseases and osteomalacia. Internist (Berl) 2008, 49: 1197–205.

    Article  Google Scholar 

  79. van Daele PL, Pols HA. Disorders of bone metabolism in gastrointestinal and hepatic diseases. Ned Tijdschr Geneeskd 2000, 144: 462–7.

    PubMed  Google Scholar 

  80. Southerland JC, Valentine JF. Osteopenia and osteoporosis in gastrointestinal diseases: diagnosis and treatment. Curr Gastroenterol Rep 2001, 3: 399–407.

    Article  PubMed  Google Scholar 

  81. Mazziotti G, Canalis E, Giustina A. Drug-induced osteoporosis: mechanisms and clinical implications. Am J Med 2010, 123: 877–84.

    Article  PubMed  Google Scholar 

  82. Bours SP, van Geel TA, Geusens PP, et al. Contributors to secondary osteoporosis and metabolic bone diseases in patients presenting with a clinical fracture. J Clin Endocrinol Metab 2011, 96: 1360–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. H. Kann MD, PhD, MA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kann, P.H., Bartsch, D., Langer, P. et al. Peripheral bone mineral density in correlation to disease-related predisposing conditions in patients with multiple endocrine neoplasia type 1. J Endocrinol Invest 35, 573–579 (2012). https://doi.org/10.3275/7880

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3275/7880

Key-words

Navigation