Skip to main content

Effect of vitamin D3 treatment on glucose metabolism and menstrual frequency in polycystic ovary syndrome women: A pilot study

Abstract

Background: Women with polycystic ovary syndrome (PCOS) frequently suffer from metabolic disturbances, in particular from insulin resistance. Accumulating evidence suggests that vitamin D deficiency may contribute to the development of insulin resistance. Hence, we aimed to examine the effect of vitamin D supplementation on metabolic and endocrine parameters in PCOS women. Methods: Fifty-seven PCOS women were included in the study. PCOS women received 20,000 IU cholecalciferol weekly for 24 weeks. Anthropometric measures, oral glucose tolerance test, and blood analyses of endocrine parameters were performed at baseline and after 12 weeks (V2) and 24 weeks (V3). Results: Forty-six PCOS women finished the study. 25-hydroxyvitamin D [25(OH)D] levels significantly increased from 28.0±11.0 ng/ml at baseline to 51.3±17.3 and 52.4±21.5 at V2 and V3, respectively (p<0.001). We observed a significant decrease of fasting and stimulated glucose (V3, p<0.05) and C-peptide levels (V2 and 3, p<0.001) after vitamin D treatment. Moreover, triglyceride and estradiol levels significantly decreased at V3 (p=0.001) and V2 (p=0.022), respectively, whereas total cholesterol (V2, p=0.008) and LDL cholesterol levels (V2, p=0.005; V3, p=0.026) significantly increased after vitamin D treatment. There were no changes in androgens. At V2, 14 out of 46 PCOS women previously affected by menstrual disturbances (30.4%) reported improvement of menstrual frequency; at V3, 23 out of 46 women (50.0%), who were oligo- or amenorrheic at baseline reported improvement. Discussion: Our results suggest that vitamin D treatment might improve glucose metabolism and menstrual frequency in PCOS women. Further randomized controlled trails are warranted to confirm our findings.

This is a preview of subscription content, access via your institution.

References

  1. Asunción M, Calvo RM, San Millán JL, Sancho J, Avila S, Escobar-Morreale HF. A prospective study of the prevalence of the polycystic ovary syndrome in unselected Caucasian women from Spain. J Clin Endocrinol Metab 2000, 85: 2434–8.

    PubMed  Google Scholar 

  2. Diamanti-Kandarakis E, Kouli CR, Bergiele AT, et al. A survey of the polycystic ovary syndrome in the Greek island of Lesbos: hormonal and metabolic profile. J Clin Endocrinol Metab 1999, 84: 4006–11.

    PubMed  Article  Google Scholar 

  3. Dunaif A. Insulin resistance and the polycystic ovary syndrome: mechanism and implications for pathogenesis. Endocr Rev 1997, 18: 774–800.

    PubMed  Google Scholar 

  4. Wehr E, Möller R, Horejsi R, et al. Subcutaneous adipose tissue topography and metabolic disturbances in polycystic ovary syndrome. Wien Klin Wochenschr 2009, 121: 262–9.

    PubMed  Article  Google Scholar 

  5. Ehrmann DA. Polycystic ovary syndrome. N Engl J Med 2005, 352: 1223–36.

    PubMed  Article  Google Scholar 

  6. Hahn S, Haselhorst U, Tan S, et al. Low serum 25-hydroxyvitamin D concentrations are associated with insulin resistance and obesity in women with polycystic ovary syndrome. Exp Clin Endocrinol Diabetes 2006, 114: 577–83.

    PubMed  Article  Google Scholar 

  7. Wehr E, Pilz S, Schweighofer N, et al. Association of hypovitaminosis D with metabolic disturbances in polycystic ovary syndrome. Eur J Endocrinol 2009, 161: 575–82.

    PubMed  Article  Google Scholar 

  8. Holick MF. Vitamin D deficiency. N Engl J Med 2007, 357: 266–81.

    PubMed  Article  Google Scholar 

  9. Pittas AG, Lau J, Hu FB, Dawson-Hughes B. The role of vitamin D and calcium in type 2 diabetes. A systematic review and meta-analysis. J Clin Endocrinol Metab 2007, 92: 2017–29.

    PubMed Central  PubMed  Article  Google Scholar 

  10. Freundlich M, Quiroz Y, Zhang Z, et al. Suppression of renin-angiotensin gene expression in the kidney by paricalcitol. Kidney Int 2008, 74: 1394–402.

    PubMed  Article  Google Scholar 

  11. Chiu KC, Chu A, Go VL, Saad MF. Hypovitaminosis D is associated with insulin resistance and beta cell dysfunction. Am J Clin Nutr 2004, 79: 820–5.

    PubMed  Google Scholar 

  12. Isaia G, Giorgino R, Adami S. High prevalence of hypovitaminosis D in female type 2 diabetic population. Diabetes Care 2001, 24: 1496.

    PubMed  Article  Google Scholar 

  13. Mahmoudi T, Gourabi H, Ashrafi M, Yazdi RS, Ezabadi Z. Calciotropic hormones, insulin resistance, and the polycystic ovary syndrome. Fertil Steril 2010, 93: 1208–14.

    PubMed  Article  Google Scholar 

  14. Konradsen S, Ag H, Lindberg F, Hexeberg S, Jorde R. Serum 1,25-dihydroxy vitamin D is inversely associated with body mass index. Eur J Nutr 2008, 47: 87–91.

    PubMed  Article  Google Scholar 

  15. Parikh SJ, Edelman M, Uwaifo GI, et al. The relationship between obesity and serum 1,25-dihydroxy vitamin D concentrations in healthy adults. J Clin Endocrinol Metab 2004, 89: 1196–9.

    PubMed  Article  Google Scholar 

  16. Heaney RP, Horst RL, Cullen DM, Armas LA. Vitamin D3 distribution and status in the body. J Am Coll Nutr 2009, 28: 252–6.

    PubMed  Article  Google Scholar 

  17. Rotterdam ESHRE/ASRM-Sponsored PCOS consensus workshop group. Revised 2003 consensus on diagnostic criteria and longterm health risks related to polycystic ovary syndrome (PCOS). Hum Reprod 2004, 19: 41–7.

    Article  Google Scholar 

  18. Legro RS, Castracane VD, Kauffman RP. Detecting insulin resistance in polycystic ovary syndrome: purposes and pitfalls. Obstet Gynecol Surv 2004, 59: 141–54.

    PubMed  Article  Google Scholar 

  19. Ish-Shalom S, Segal E, Salganik T, Raz B, Bromberg IL, Vieth R. Comparison of daily, weekly, and monthly vitamin D3 in ethanol dosing protocols for two months in elderly hip fracture patients. J Clin Endocrinol Metab 2008, 93: 3450–5.

    Article  Google Scholar 

  20. Whiting SJ, Calvo MS. Correcting poor vitamin D status: do older adults need higher repletion doses of vitamin D3 than younger adults? Mol Nutr Food Res 2010, 54: 1077–84.

    PubMed  Google Scholar 

  21. Zittermann A, Frisch S, Berthold HK, et al. Vitamin D supplementation enhances the beneficial effects of weight loss on cardiovascular disease risk markers. Am J Clin Nutr 2009, 89: 1321–7.

    PubMed  Article  Google Scholar 

  22. Pilz S, Dobnig H, Winklhofer-Roob B, et al. Low serum levels of 25hydroxyvitamin D predict fatal cancer in patients referred to coronary angiography. Cancer Epidemiol Biomarkers Prev 2008, 17: 1228–33.

    PubMed  Article  Google Scholar 

  23. Pilz S, März W, Wellnitz B, et al. Association of vitamin D deficiency with heart failure and sudden cardiac death in a large cross-sectional study of patients referred for coronary angiography. J Clin Endocrinol Metab 2008, 93: 3927–35.

    PubMed  Article  Google Scholar 

  24. Autier P, Gandini S. Vitamin D supplementation and total mortality: a meta-analysis of randomized controlled trials. Arch Intern Med 2007, 167: 1730–7.

    PubMed  Article  Google Scholar 

  25. Bischoff-Ferrari HA, Willett WC, Wong JB, et al. Prevention of nonvertebral fractures with oral vitamin D and dose dependency: a meta-analysis of randomized controlled trials. Arch Intern Med 2009, 169: 551–61.

    PubMed  Article  Google Scholar 

  26. Zittermann A, Gummert JF, Börgermann J. Vitamin D deficiency and mortality. Curr Opin Clin Nutr Metab Care 2009, 12: 634–9.

    PubMed  Article  Google Scholar 

  27. Pittas AG, Harris SS, Stark PC, Dawson-Hughes B. The effects of calcium and vitamin D supplementation on blood glucose and markers of inflammation in nondiabetic adults. Diabetes Care 2007, 30: 980–6.

    PubMed  Article  Google Scholar 

  28. Hsia J, Heiss G, Ren H, et al; Women’s Health Initiative Investigators. Calcium/vitamin D supplementation and cardiovascular events. Circulation 2007, 115: 846–54.

    PubMed  Article  Google Scholar 

  29. Kotsa K, Yavropoulou MP, Anastasiou O, Yovos JG. Role of vitamin D treatment in glucose metabolism in polycystic ovary syndrome. Fertil Steril 2009, 92: 1053–8.

    PubMed  Article  Google Scholar 

  30. Selimoglu H, Duran C, Kiyici S, et al. The effect of vitamin D replacement therapy on insulin resistance and androgen levels in women with polycystic ovary syndrome. J Endocrinol Invest 2010, 33: 234–8.

    PubMed  Article  Google Scholar 

  31. Lacour B, Basile C, Drüeke T, Funck-Brentano JL Parathyroid function and lipid metabolism in the rat. Miner Electrolyte Metab 1982, 7: 157–65.

    PubMed  Google Scholar 

  32. Rajpathak SN, Xue X, Wassertheil-Smoller S, et al. Effect of 5 y of calcium plus vitamin D supplementation on change in circulating lipids: results from the Women’s Health Initiative. Am J Clin Nutr 2010, 91: 894–9.

    PubMed Central  PubMed  Article  Google Scholar 

  33. Ozkan S, Jindal S, Greenseid K, et al. Replete vitamin D stores predict reproductive success following in vitro fertilization. Fertil Steril 2010, 94: 1314–9.

    PubMed Central  PubMed  Article  Google Scholar 

  34. Thys-Jacobs S, Donovan D, Papadopoulos A, Sarrel P, Bilezikian JP. Vitamin D and calcium dysregulation in the polycystic ovarian syndrome. Steroids 1999, 64: 430–5.

    PubMed  Article  Google Scholar 

  35. Yildizhan R, Kurdoglu M, Adali E, et al. Serum 25-hydroxyvitamin D concentrations in obese and non-obese women with polycystic ovary syndrome. Arch Gynecol Obstet 2009, 280: 559–63.

    PubMed  Article  Google Scholar 

  36. Knight JA, Wong J, Blackmore KM, Raboud JM, Vieth R. Vitamin D association with estradiol and progesterone in young women. Cancer Causes Control 2010, 21: 479–83.

    PubMed  Article  Google Scholar 

  37. Knight JA, Lesosky M, Barnett H, Raboud JM, Vieth R. Vitamin D and reduced risk of breast cancer: a population-based case-control study. Cancer Epidemiol Biomarkers Prev 2007, 16: 422–9.

    PubMed  Article  Google Scholar 

  38. Pike MC, Spicer DV, Dahmoush L, Press MF. Estrogens, progestogens, normal breast cell proliferation, and breast cancer risk. Epidemiol Rev 1993, 15: 17–35.

    PubMed  Google Scholar 

  39. Du H, Daftary GS, Lalwani SI, Taylor HS. Direct regulation of HOXA10 by 1,25-(OH)2D3 in human myelomonocytic cells and human endometrial stromal cells. Mol Endocrinol 2005, 19: 2222–33.

    PubMed  Article  Google Scholar 

  40. Halloran BP, DeLuca HF. Effect of vitamin D deficiency on fertility and reproductive capacity in the female rat. J Nutr 1980, 110: 1573–80.

    PubMed  Google Scholar 

  41. Yoshizawa T, Handa Y, Uematsu Y, et al. Mice lacking the vitamin D receptor exhibit impaired bone formation, uterine hypoplasia and growth retardation after weaning. Nat Genet 1997, 16: 391–6.

    PubMed  Article  Google Scholar 

  42. Kovacs CS, Woodland ML, Fudge NJ, Friel JK. The vitamin D receptor is not required for fetal mineral homeostasis or for the regulation of placental calcium transfer in mice. Am J Physiol Endocrinol Metab 2005, 289: E133–44.

    PubMed  Article  Google Scholar 

  43. De Felici M, Dolci S, Siracusa G. An increase of intracellular free Ca2+ is essential for spontaneous meiotic resumption by mouse oocytes. J Exp Zool 1991, 260: 401–5.

    PubMed  Article  Google Scholar 

  44. Holick MF. Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease. Am J Clin Nutr 2004, 80: 1678–88S.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Wehr MD.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wehr, E., Pieber, T.R. & Obermayer-Pietsch, B. Effect of vitamin D3 treatment on glucose metabolism and menstrual frequency in polycystic ovary syndrome women: A pilot study. J Endocrinol Invest 34, 757–763 (2011). https://doi.org/10.3275/7748

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3275/7748

Key-words

  • Fertility
  • glucose metabolism
  • intervention
  • PCOS
  • vitamin D3