Skip to main content
Log in

Effects of highly purified follicle-stimulating hormone on sperm DNA damage in men with male idiopathic subfertility: A pilot study

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Background: Gonadotropins administration have been demonstrated effective for the treatment of idiopathic male infertility, even if no clear data regarding their specific mechanism of action on semen quality are at the moment available. Aim: To evaluate the effect of highly purified FSH (hpFSH) administration on standard semen parameters, sperm oxidative stress, and sperm chromatin structure and DNA fragmentation. Material and methods: In the current prospective baseline-controlled study, 36 subjects with male idiophatic infertility were enrolled. Baseline clinical and biochemical data were evaluated. Before and after 3 months of treatment with hpFSH, sperm samples were collected and standard semen analysis, reactive oxygen species (ROS) assessment and sperm DNA fragmentation were evaluated. Results: A significant (p<0.05) improvement from baseline in standard seminal parameters was observed. A significant (p<0.05) reduction in sperm ROS levels and DNA fragmentation was observed. Statistically significant (p<0.05) correlations between variation in ROS levels and both seminal parameters and DNA fragmentation variations were detected. Conclusions: Three months of hpFSH administration seems to reduce ROS and DNA damage in subjects with male idiopathic subfertility improving semen parameters. Further evidences from well-designed randomized double-blind placebo-controlled studies are needed in order to confirm our preliminary results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thonneau P, Marchand S, Tallec A, et al. Incidence and main causes of infertility in a resident population (1,850,000) of three French regions (1988–1989). Hum Reprod 1991, 6: 811–6.

    PubMed  Google Scholar 

  2. Hull MG, Eddowes HA, Fahy U, et al. Expectations of assisted conception for infertility. BMJ 1992, 304: 1465–9.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Nygren KG, Andersen AN. Assisted reproductive technology in Europe, 1999. Results generated from European registers by ESHRE. Hum Reprod 2002, 17: 3260–74.

    Article  PubMed  Google Scholar 

  4. Padron OF, Brackett NL, Sharma RK, Lynne CM, Thomas AJ, Agarwal A. Seminal reactive oxygen species and sperm motility and morphology in men with spinal cord injury. Fertil Steril 1997, 67: 1115–20.

    Article  PubMed  Google Scholar 

  5. Krausz C, West K, Buckingham D, Aitken RJ. Development of a technique for monitoring the contamination of human semen samples with leukocytes. Fertil Steril 1992, 57: 1317–25.

    PubMed  Google Scholar 

  6. Ollero M, Gil-Guzman E, Lopez MC, et al. Characterization of subsets of human spermatozoa at different stages of maturation: implications in the diagnosis and treatment of male infertility. Hum Reprod 2001, 16: 1912–21.

    Article  PubMed  Google Scholar 

  7. Loft S, Kold-Jensen T, Hjollund NH, et al. Oxidative DNA damage in human sperm influences time to pregnancy. Hum Reprod 2003, 18: 1265–72.

    Article  PubMed  Google Scholar 

  8. Tesarik J, Mendoza-Tesarik R, Mendoza C. Sperm nuclear damage DNA change: update on the mechanism, diagnosis and treatment. Reprod Biomed Online 2006, 12: 715–21.

    Article  PubMed  Google Scholar 

  9. Aitken RJ, Fisher H. Reactive oxygen species generation and human spermatozoa: the balance of benefits and risk. Bioassays 1994, 16: 259–67.

    Article  Google Scholar 

  10. De Lamirande E, Gagnon C. Impact of reactive species on spermatozoa: a balancing act between beneficial and detrimental effects. Hum Reprod 1995, 10: 15–21.

    Article  PubMed  Google Scholar 

  11. Ozdamar AS, Soylu AG, Culha M, Gökalp A. Testicular oxidative stress. Effects of experimental varicocele in adolescent rats. Urol Int 2004, 73: 343–7.

    Article  PubMed  Google Scholar 

  12. Yumura Y, Iwasaki A, Saito K, Ogawa T, Hirokawa M. Effect of reactive oxygen species in semen on the pregnancy of infertile couples. Int J Urol 2009, 16: 202–7.

    Article  PubMed  Google Scholar 

  13. Attia AM, Al-Inany HG, Farquhar C, Proctor M. Gonadotrophins for idiopathic male factor subfertility. Cochrane Database Syst Rev. 2007, 4: CD005071.

    PubMed  Google Scholar 

  14. World Health Organization. WHO Laboratory Manual for the Examination of Human Semen and Sperm-Cervical Mucus Interaction. 3rd ed. Cambridge University Press, Cambridge, 1992.

    Google Scholar 

  15. World Health Organization. WHO Laboratory manual for the examination of human semen and sperm-cervical mucus interaction. Cambridge University Press, New York, 1999.

    Google Scholar 

  16. Orio F Jr, Palomba S, Di Biase S, et al. Homocysteine levels and C677T polymorphism of methylenetetrahydrofolate reductase in women with polycystic ovary sindrome. J Clin Endocrinol Metab 2003, 88: 673–9.

    Article  PubMed  Google Scholar 

  17. Kobayashi H, Gil-Guzman E, Mahran AM, et al. Quality control of reactive oxygen species measurement by luminol-dependent chemiluminescence assay. J Androl 2001, 22: 568–74.

    PubMed  Google Scholar 

  18. Fernández JL, Muriel L, Goyanes V, et al. Simple determination of human sperm DNA fragmentation with an improved sperm chromatin dispersion test. Fertil Steril 2005, 84: 833–42.

    Article  PubMed  Google Scholar 

  19. Nieschlag E, Simoni M, Gromoll J, Weinbauer GF. Role of FSH in the regulation of spermatogenesis: clinical aspects. Clin Endocrinol (Oxf) 1999, 51: 139–46.

    Article  Google Scholar 

  20. Foresta C, Bettella A, Merico M, et al. FSH in the treatment of oligozoospermia. Mol Cell Endocrinol 2000, 30: 89–97.

    Article  Google Scholar 

  21. Foresta C, Bettella A, Merico M, Garolla A, Ferlin A, Rossato M. Use of recombinant human follicle-stimulating hormone in the treatment of male factor infertility. Fertil Steril 2002, 77: 238–44.

    Article  PubMed  Google Scholar 

  22. Foresta C, Selice R, Ferlin A, Garolla A. Recombinant FSH in the treatment of oligozoospermia. Expert Opin Biol Ther 2009, 9: 659–66.

    Article  PubMed  Google Scholar 

  23. Foresta C, Bettella A, Garolla A, Ambrosini G, Ferlin A. Treatment of male idiopathic infertility with recombinant human follicle-stimulating hormone: a prospective, controlled, randomized clinical study. Fertil Steril 2005, 84: 654–66.

    Article  PubMed  Google Scholar 

  24. Gualtieri AF, Mazzone GL, Rey RA, Schteingart HF. FSH and bFGF stimulate the production of glutathione in cultured rat Sertoli cells. Int J Androl 2009, 32: 218–25.

    Article  PubMed  Google Scholar 

  25. Ochsendorf FR, Buhl R, Bästlein A, Beschmann H. Glutathione in spermatozoa and seminal plasma of infertile men. Hum Reprod 1998, 13: 353–9.

    Article  PubMed  Google Scholar 

  26. Agarwal A, Makker K, Sharma R. Clinical relevance of oxidative stress in male factor infertility: an update. Am J Reprod Immunol 2008, 59: 2–11.

    Article  PubMed  Google Scholar 

  27. Coniglio JG. Testicular lipids. Prog Lipid Res 1994, 33: 387–401.

    Article  PubMed  Google Scholar 

  28. Sikka SC. Oxidative stress and role of antioxidants in normal and abnormal sperm function. Front Biosci 1996, 1: e78–86.

    PubMed  Google Scholar 

  29. Venkatesh S, Deecaraman M, Kumar R, Shamsi MB, Dada R. Role of reactive oxygen species in the pathogenesis of mitochondrial DNA (mtDNA) mutations in male infertility. Indian J Med Res 2009, 129: 127–37.

    PubMed  Google Scholar 

  30. Lopes S, Jurisicova A, Sun JG, Casper RF. Reactive oxygen species: potential cause for DNA fragmentation in human spermatozoa. Hum Reprod 1998, 13: 896–900.

    Article  PubMed  Google Scholar 

  31. Twigg J, Fulton N, Gòmez E. Analysis of the impact of intracellular reactive oxygen species generation on the structural and functional integrity of human spermatozoa: lipid peroxidation, DNA fragmentation and effective antioxidants. Hum Reprod 1998, 13: 1429–36.

    Article  PubMed  Google Scholar 

  32. Lin MH, Kuo-Kuang Lee R, Li SH, Lu CH, Sun FJ, Hwu YM. Sperm chromatin structure assay parameters are not related to fertilization rates, embryo quality, and pregnancy rates in in vitro fertilization and intracytoplasmic sperm injection, but might be related to spontaneous abortion rates. Fertil Steril 2008, 90: 352–9.

    Article  PubMed  Google Scholar 

  33. Appasamy M, Muttukrishna S, Pizzey AR, et al. Relationship between male reproductive hormones, sperm DNA damage and markers of oxidative stress in infertility. Reprod Biomed Online 2007, 14: 159–65.

    Article  PubMed  Google Scholar 

  34. Frank SA, Hurst LD. Mitochondria and male disease. Nature 1996, 383: 224.

    Article  PubMed  Google Scholar 

  35. Cummins JM, Jequier AM, Kan R. Molecular biology of human male infertility: links with aging, mitochondrial genetics, and oxidative stress? Mol Reprod Dev 1994, 37: 345–62.

    Article  PubMed  Google Scholar 

  36. St John JC, Cooke ID, Barratt CL. Mitochondrial mutations and male infertility. Nat Med 1997, 3: 124–5.

    Article  PubMed  Google Scholar 

  37. Moskovtsev SI, Willis J, White J, Mullen JB. Sperm DNA damage: correlation to severity of semen abnormalities. Urology 2009, 74: 789–93.

    Article  PubMed  Google Scholar 

  38. Smit M, Romijn JC, Wildhagen MF, Weber RF, Dohle GR. Sperm chromatin structure is associated with the quality of spermatogenesis in infertile patients. Fertil Steril 2010, 94: 1748–52.

    Article  PubMed  Google Scholar 

  39. Mehdi M, Khantouche L, Ajina M, Saad A. Detection of DNA fragmentation in human spermatozoa: correlation with semen parameters. Andrologia 2009, 41: 383–6.

    Article  PubMed  Google Scholar 

  40. Fernández JL, Muriel L, Goyanes V, et al. Halosperm is an easy, available, and cost-effective alternative for determining sperm DNA fragmentation. Fertil Steril 2005, 84: 860.

    Article  PubMed  Google Scholar 

  41. Chohan KR, Griffin JT, Lafromboise M, De Jonge CJ, Carrell DT. Comparison of chromatin assays for DNA fragmentation evaluation in human sperm. J Androl 2006, 27: 53–9.

    Article  PubMed  Google Scholar 

  42. Enciso M, Muriel L, Fernández JL, et al. Infertile men with varicocele show a high relative proportion of sperm cells with intense nuclear damage level, evidenced by the sperm chromatin dispersion test. J Androl 2006, 27: 106–11.

    Article  PubMed  Google Scholar 

  43. Velez de la Calle JF, Muller A, Walschaerts M, et al. Sperm deoxyribonucleic acid fragmentation as assessed by the sperm chromatin dispersion test in assisted reproductive technology programs: results of a large prospective multicenter study. Fertil Steril 2008, 90: 1792–9.

    Article  PubMed  Google Scholar 

  44. Saleh RA, Agarwal A, Nada EA, et al. Negative effects of increased sperm DNA damage in relation to seminal oxidative stress in men with idiopathic and male factor infertility. Fertil Steril 2003, 79: 1597–605.

    Article  PubMed  Google Scholar 

  45. Henkel R, Kierspel E, Hajimohammad M, et al. DNA fragmentation of spermatozoa and assisted reproduction technology. Reprod Biomed Online 2003, 7: 477–84.

    Article  PubMed  Google Scholar 

  46. Ménézo YJ, Hazout A, Panteix G, et al. Antioxidants to reduce sperm DNA fragmentation: an unexpected adverse effect. Reprod Biomed Online 2007, 14: 418–21.

    Article  PubMed  Google Scholar 

  47. Tunc O, Thompson J, Tremellen K. Improvement in sperm DNA quality using an oral antioxidant therapy. Reprod Biomed Online 2009, 18: 761–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Palomba MD.

About this article

Cite this article

Palomba, S., Falbo, A., Espinola, S. et al. Effects of highly purified follicle-stimulating hormone on sperm DNA damage in men with male idiopathic subfertility: A pilot study. J Endocrinol Invest 34, 747–752 (2011). https://doi.org/10.3275/7745

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3275/7745

Key-words

Navigation