Advertisement

Journal of Endocrinological Investigation

, Volume 35, Issue 1, pp 49–53 | Cite as

Deletion of thyrotropin receptor residue Asp403 in a hyperfunctioning thyroid nodule provides insight into the role of the ectodomain in ligand-induced receptor activation

  • E. NishiharaEmail author
  • C.-R. Chen
  • Y. Mizutori-Sasai
  • M. Ito
  • S. Kubota
  • N. Amino
  • A. Miyauchi
  • B. Rapoport
Original Article
  • 34 Downloads

Abstract

Somatic mutations of the TSH receptor (TSHR) gene are the main cause of autonomously functioning thyroid nodules. Except for mutations in ectodomain residue S281, all of the numerous reported activating mutations are in the TSHR membrane-spanning region. Here, we describe a patient with a toxic adenoma with a novel heterozygous somatic mutation caused by deletion of ectodomain residue Asp403 (Del-D403). Subsequent in vitro functional studies of the Del-D403 TSHR mutation demonstrated greatly increased ligand-independent constitutive activity, 8-fold above that of the wild-type TSHR. TSH stimulation had little further effect, indicating that the mutation produced near maximal activation of the receptor. In summary, we report only the second TSHR ectodomain activating mutation (and the first ectodomain deletion mutation) responsible for development of a thyroid toxic adenoma. Because Del-D403 causes near maximal activation, our finding provides novel insight into TSHR structure and function; residue D403 is more likely to be involved in the ligand-mediated activating pathway than in the ectodomain inverse agonist property.

Key-words

Adenylyl cyclase activation autonomously functioning thyroid nodule ectodomain somatic mutation thyrotropin receptor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vassart G, Pardo L, Costagliola S. A molecular dissection of the glycoprotein hormone receptors. Trends Biochem Sci 2004, 29: 119–26.PubMedCrossRefGoogle Scholar
  2. 2.
    Kleinau G, Krause G. Thyrotropin and homologous glycoprotein hormone receptors: structural and functional aspects of extracellular signaling mechanisms. Endocr Rev 2009, 30: 133–51.PubMedCrossRefGoogle Scholar
  3. 3.
    Vlaeminck-Guillem V, Ho SC, Rodien P, Vassart G, Costagliola S. Activation of the cAMP pathway by the TSH receptor involves switching of the ectodomain from a tethered inverse agonist to an agonist. Mol Endocrinol 2002, 16: 736–46.PubMedCrossRefGoogle Scholar
  4. 4.
    Parma J, Duprez L, Van Sande J, et al. Diversity and prevalence of somatic mutations in the thyrotropin receptor and Gs alpha genes as a cause of toxic thyroid adenomas. J Clin Endocrinol Metab 1997, 82: 2695–701.PubMedGoogle Scholar
  5. 5.
    Führer D, Holzapfel HP, Wonerow P, Scherbaum WA, Paschke R. Somatic mutations in the thyrotropin receptor gene and not in the Gs alpha protein gene in 31 toxic thyroid nodules. J Clin Endocrinol Metab 1997, 82: 3885–91.PubMedGoogle Scholar
  6. 6.
    Trulzsch B, Krohn K, Wonerow P, et al. Detection of thyroid-stimulating hormone receptor and Gsalpha mutations: in 75 toxic thyroid nodules by denaturing gradient gel electrophoresis. J Mol Med 2001, 78: 684–91.PubMedCrossRefGoogle Scholar
  7. 7.
    Arturi F, Scarpelli D, Coco A, et al. Thyrotropin receptor mutations and thyroid hyperfunctioning adenomas ten years after their first discovery: unresolved questions. Thyroid 2003, 13: 341–3.PubMedCrossRefGoogle Scholar
  8. 8.
    Gozu HI, Bircan R, Krohn K, et al. Similar prevalence of somatic TSH receptor and Gsalpha mutations in toxic thyroid nodules in geographical regions with different iodine supply in Turkey. Eur J Endocrinol 2006, 155: 535–45.PubMedCrossRefGoogle Scholar
  9. 9.
    Nishihara E, Amino N, Maekawa K, et al. Prevalence of TSH receptor and Gsalpha mutations in 45 autonomously functioning thyroid nodules in Japan. Endocr J 2009, 56: 791–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Duprez L, Parma J, Costagliola S, et al. Constitutive activation of the TSH receptor by spontaneous mutations affecting the N-terminal extracellular domain. FEBS Lett 1997, 409: 469–74.PubMedCrossRefGoogle Scholar
  11. 11.
    Kopp P, Muirhead S, Jourdain N, Gu WX, Jameson JL, Rodd C. Congenital hyperthyroidism caused by a solitary toxic adenoma harboring a novel somatic mutation (serine281—>isoleucine) in the extracellular domain of the thyrotropin receptor. J Clin Invest 1997, 100: 1634–9.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Rapoport B, Chazenbalk GD, Jaume JC, McLachlan SM. The thyrotropin (TSH) receptor: interaction with TSH and autoantibodies. Endocr Rev 1998, 19: 673–716.PubMedGoogle Scholar
  13. 13.
    Mueller S, Kleinau G, Jaeschke H, Neumann S, Krause G, Paschke R. Significance of ectodomain cysteine boxes 2 and 3 for the activation mechanism of the thyroid-stimulating hormone receptor. J Biol Chem 2006, 281: 31638–46.PubMedCrossRefGoogle Scholar
  14. 14.
    Grüters A, Schöneberg T, Biebermann H, et al. Severe congenital hyperthyroidism caused by a germ-line neo mutation in the extracellular portion of the thyrotropin receptor. J Clin Endocrinol Metab 1998, 83: 1431–6.PubMedGoogle Scholar
  15. 15.
    Russo D, Arturi F, Chiefari E, Filetti S. Molecular insights into TSH receptor abnormality and thyroid disease. J Endocrinol Invest 1997, 20: 36–47.PubMedCrossRefGoogle Scholar
  16. 16.
    Kleinau G, Jäschke H, Neumann S, Lättig J, Paschke R, Krause G. Identification of a novel epitope in the thyroid-stimulating hormone receptor ectodomain acting as intramolecular signaling interface. J Biol Chem 2004, 279: 51590–600.PubMedCrossRefGoogle Scholar
  17. 17.
    Nishihara E, Fukata S, Hishinuma A, et al. Sporadic congenital hyperthyroidism due to a germline mutation in the thyrotropin receptor gene (Leu 512 Gln) in a Japanese patient. Endocr J 2006, 53: 735–40.PubMedCrossRefGoogle Scholar
  18. 18.
    Nishihara E, Nagayama Y, Amino N, et al. A novel thyrotropin receptor germline mutation (Asp617Tyr) causing hereditary hyperthyroidism. Endocr J 2007, 54: 927–34.PubMedCrossRefGoogle Scholar
  19. 19.
    Nishihara E, Chen C, Higashiyama T, et al. Subclinical nonautoimmune hyperthyroidism in a family segregates with a thyrotropin receptor mutation with weakly increased constitutive activity. Thyroid 2010, 20: 1307–14.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Ho SC, Van Sande J, Lefort A, Vassart G, Costagliola S. Effects of mutations involving the highly conserved S281HCC motif in the extracellular domain of the thyrotropin (TSH) receptor on TSH binding and constitutive activity. Endocrinology 2001, 142: 2760–7.PubMedGoogle Scholar
  21. 21.
    Camilot M, Teofoli F, Gandini A, et al. Thyrotropin receptor gene mutations and TSH resistance: variable expressivity in the heterozygotes. Clin Endocrinol (Oxf) 2005, 63: 146–51.CrossRefGoogle Scholar
  22. 22.
    Duprez L, Hermans J, Van Sande J, Dumont JE, Vassart G, Parma J. Two autonomous nodules of a patient with multinodular goiter harbor different activating mutations of the thyrotropin receptor gene. J Clin Endocrinol Metab 1997, 82: 306–8.PubMedGoogle Scholar
  23. 23.
    Zhang M, Tong KP, Fremont V, et al. The extracellular domain suppresses constitutive activity of the transmembrane domain of the human TSH receptor: implications for hormone-receptor interaction and antagonist design. Endocrinology 2000, 141: 3514–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Mizutori Y, Chen CR, McLachlan SM, Rapoport B. The thyrotropin receptor hinge region is not simply a scaffold for the leucine-rich domain but contributes to ligand binding and signal transduction. Mol Endocrinol 2008, 22: 1171–82.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Italian Society of Endocrinology (SIE) 2012

Authors and Affiliations

  • E. Nishihara
    • 1
    Email author
  • C.-R. Chen
    • 2
  • Y. Mizutori-Sasai
    • 1
  • M. Ito
    • 1
  • S. Kubota
    • 1
  • N. Amino
    • 1
  • A. Miyauchi
    • 1
  • B. Rapoport
    • 2
  1. 1.Center for Excellence in Thyroid CareKuma HospitalKobeJapan
  2. 2.Thyroid Autoimmunity UnitCedars-Sinai Research Institute and University of California Los Angeles School of MedicineLos AngelesUSA

Personalised recommendations