Skip to main content

Advertisement

Log in

Progesterone turnover to its 5α-reduced metabolites in the ventral tegmental area of the midbrain is essential for initiating social and affective behavior and progesterone metabolism in female rats

  • Electronic Contents
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Background: Among women and female rodents, progesterone (P) influences social affiliation and affect. These effects may be partly due to formation of its 5α-reduced, 3α-hydroxylated metabolite, 5α-pregnan-3α-ol-20-one (3α,5α-THP). Aim: To elucidate whether actions of 3α,5α-THP in the midbrain ventral tegmental area (VTA) are both necessary and sufficient to enhance non-sexual and sexual social behaviors, affect, and central 3α,5α-THP metabolism. Materials and methods: P and 3α,5α-THP formation were unperturbed or blocked in VTA via infusions of vehicle, PK11195 (400 ng), and/or indomethacin (10 µg). Rats then received subsequent infusions of vehicle or 3α,5α-THP (100 ng) and were assessed in a battery of tasks that included open field (exploration), elevated plus maze (anxiety behavior), social interaction (social affiliation), and paced mating (sexual behavior) or were not tested. Metabolic turnover of P to its 5α-reduced metabolites was assessed in plasma, midbrain, hippocampus, frontal cortex, diencephalon, and remaining subcortical tissues (control interbrain). Results: Infusions of any combination of inhibitors significantly reduced social and affective behavior in all tasks compared to vehicle, concomitant with reduced turnover of P to its 5α-reduced metabolites, in midbrain only. Subsequent infusions of 3α,5α-THP significantly reinstated/enhanced anti-anxiety behavior, lordosis, and P turnover to its 5α-reduced metabolites in midbrain, as well as hippocampus, cortex, and diencephalon (but not plasma or interbrain). Conclusions: These data are the first to provide direct evidence that actions of 3α,5α-THP in the VTA are both necessary and sufficient for social and affective behavior, as well as initiation of central 5α-reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cacioppo JT, Amaral DG, Blanchard JJ, et al. Social Neuroscience: Progress and implications for mental health. Perspect Psychol Sci 2007, 2: 99–123.

    Google Scholar 

  2. Feinberg DR, Jones BC, Law Smith MJ, et al. Menstrual cycle, trait estrogen level, and masculinity preferences in the human voice. Horm Behav 2006, 49: 215–22.

    PubMed  Google Scholar 

  3. Johnston VS, Hagel R, Franklin M, Fink B, Grammer K. Male facial attractiveness: Evidence for hormone mediated adaptive design. Evol Hum Behav 2001, 22: 251–67.

    Google Scholar 

  4. Jones BC, Perrett DI, Little AC, et al. Menstrual cycle, pregnancy and oral contraceptive use alter attraction to apparent health in faces. Proc R Soc Lond B 2005, 272: 347–54.

    Google Scholar 

  5. Jones BC, DeBruine LM, Perrett DI, Little AC, Feinberg DR, Law Smith MJ. Effects of menstrual cycle phase on face preferences. Arch Sex Behav 2008, 37: 78–84.

    PubMed  Google Scholar 

  6. Little AC, Jones BC, Burriss RP. Preferences for masculinity in male bodies change across the menstrual cycle. Horm Behav 2007, 52: 633–9.

    Google Scholar 

  7. Penton-Voak IS, Perrett DI, Castles DL, et al. Menstrual cycle alters face preference. Nature 1999, 399: 741–2.

    PubMed  Google Scholar 

  8. Puts DA. Mating context and menstrual phase affect women’s preferences for male voice pitch. Evol Hum Behav 2005, 26: 388–97.

    Google Scholar 

  9. Atkinson JW. Motives in fantasy, action, and society: A method of assessment and study. Oxford, England: Van Nostrand, 1958.

    Google Scholar 

  10. Schultheiss OC, Dargel A, Rohde W. Implicit motives and gonadal steroid hormones: effects of menstrual cycle phase, oral contraceptive use, and relationship status. Horm Behav 2003, 43: 293–301.

    PubMed  Google Scholar 

  11. Brown SL, Fredrickson BL, Wirth MM, et al. Social closeness increases salivary progesterone in humans. Horm Behav 2009, 56: 108–11.

    PubMed Central  PubMed  Google Scholar 

  12. Schultheiss OC, Wirth MM, Stanton SJ. Effects of affiliation and power motivation arousal on salivary progesterone and testosterone. Horm Behav 2004, 46: 592–9.

    PubMed  Google Scholar 

  13. Wirth MM, Schultheiss OC. Effects of affiliation arousal (hope of closeness) and affiliation stress (fear of rejection) on progesterone and cortisol. Horm Behav 2006, 50: 786–95.

    PubMed  Google Scholar 

  14. Frye CA, Rhodes ME, Petralia SM, Walf AA, Sumida K, Edinger KL. 3α-hydroxy-5α-pregnan-20-one in the midbrain ventral tegmental area mediates social, sexual, and affective behaviors. Neuroscience 2006, 138: 1007–14.

    PubMed Central  PubMed  Google Scholar 

  15. Meisel RL, Sterner MR. Progesterone inhibition of sexual behavior is accompanied by an activation of aggression in female Syrian hamsters. Physiol Behav 1990, 47: 415–7.

    PubMed  Google Scholar 

  16. Albert DJ, Jonik RH, Walsh ML. Interaction of estradiol, testosterone, and progesterone in the modulation of hormone-dependent aggression in the female rat. Physiol Behav 1992, 52: 773–9.

    PubMed  Google Scholar 

  17. Shively CA, Wood CE, Register TC, et al. Hormone therapy effects on social behavior and activity levels of surgically postmenopausal cynomolgus monkeys. Psychoneuroendocrinology 2007, 32: 981–90.

    PubMed  Google Scholar 

  18. Giles LC, Glonek GF, Luszcz MA, Andrews GR. Effect of social networks on 10 year survival in very old Australians: the Australian longitudinal study of aging. J Epidemiol Community Health 2005, 59: 574–9.

    PubMed Central  PubMed  Google Scholar 

  19. Taylor TL, Killaspy H, Wright C, et al. A systematic review of the international published literature relating to quality of institutional care for people with longer term mental health problems. BMC Psychiatry 2009, 9: 55.

    PubMed Central  PubMed  Google Scholar 

  20. Boivin J, Takefman JE. Stress level across stages of in vitro fertilization in subsequently pregnant and nonpregnant women. Fertil Steril 1995, 64: 802–10.

    PubMed  Google Scholar 

  21. Girdler SS, Straneva PA, Light KC, Pedersen CA, Morrow AL. Allopregnanolone levels and reactivity to mental stress in premenstrual dysphoric disorder. Biol Psychiatry 2001, 49: 788–97.

    PubMed  Google Scholar 

  22. Kirschbaum C, Kudielka BM, Gaab J, Schommer NC, Hellhammer DH. Impact of gender, menstrual cycle phase, and oral contraceptives on the activity of the hypothalamus-pituitary-adrenal axis. Psychosom Med 1999, 61: 154–62.

    PubMed  Google Scholar 

  23. Roca CA, Schmidt PJ, Altemus M, et al. Differential menstrual cycle regulation of hypothalamic-pituitary-adrenal axis in women with premenstrual syndrome and controls. J Clin Endocrinol Metab 2003, 88: 3057–63.

    PubMed  Google Scholar 

  24. Altemus M, Redwine LS, Leong YM, Frye CA, Porges SW, Carter CS. Responses to laboratory psychosocial stress in postpartum women. Psychosom Med 2001, 63: 814–21.

    PubMed  Google Scholar 

  25. Angold A, Costello EJ, Erkanli A, Worthman CM. Pubertal changes in hormone levels and depression in girls. Psychol Med 1999, 29: 1043–53.

    PubMed  Google Scholar 

  26. Bäckström T, Andreen L, Birzniece V, et al. The role of hormones and hormonal treatments in premenstrual syndrome. CNS Drugs 2003, 17: 325–42.

    PubMed  Google Scholar 

  27. Chaudron LH, Klein MH, Remington P, Palta M, Allen C, Essex MJ. Predictors, prodromes and incidence of postpartum depression. J Psychosom Obstet Gynaecol 2001, 22: 103–12.

    PubMed  Google Scholar 

  28. Freeman EW, Frye CA, Rickels K, Martin PA, Smith SS. Allopregnanolone levels and symptom improvement in severe premenstrual syndrome. J Clin Psychopharmacol 2002, 22: 516–20.

    PubMed  Google Scholar 

  29. Glick ID, Bennett SE. Psychiatric complications of progesterone and oral contraceptives. J Clin Psychopharmacol 1981, 1: 350–67.

    PubMed  Google Scholar 

  30. Rapkin AJ, Mikacich JA, Moatakef-Imani B, Rasgon N. The clinical nature and formal diagnosis of premenstrual, postpartum, and perimenopausal affective disorders. Curr Psychiatry Rep 2002, 4: 419–28.

    PubMed  Google Scholar 

  31. Hellman L, Yoshida K, Zumoff B, Levin J, Kream J, Fukushima DK. The effect of medroxyprogesterone acetate on the pituitary-adrenal axis. J Clin Endocrinol Metab 1976, 42: 912–7.

    PubMed  Google Scholar 

  32. Le Mellédo J, Jhangri GS, Lott P, et al. Effect of medroxyprogesterone pretreatment on pentagastrin-induced panic symptoms in females with panic disorder. Psychiatry Res 2001, 101: 237–42.

    PubMed  Google Scholar 

  33. Le Mellédo JM, Baker G. Role of progesterone and other neuroactive steroids in anxiety disorders. Expert Rev Neurother 2004, 4: 851–60.

    PubMed  Google Scholar 

  34. Bitran D, Shiekh M, McLeod M. Anxiolytic effect of progesterone is mediated by the neurosteroid allopregnanolone at brain GABAA receptors. J Neuroendocrinol 1995, 7: 171–7.

    PubMed  Google Scholar 

  35. Fernández-Guasti A, Picazo O. Sexual differentiation modifies the allopregnanolone anxiolytic actions in rats. Psychoneuroendocrinology 1999, 24: 251–67.

    PubMed  Google Scholar 

  36. Llaneza DC, Frye CA. Progestogens and estrogen influence impulsive burying and avoidant freezing behavior of naturally cycling and ovariectomized rats. Pharmacol Biochem Behav 2009, 93: 337–42.

    PubMed Central  PubMed  Google Scholar 

  37. Mora S, Dussaubat N, Díaz-Véliz G. Effects of the estrous cycle and ovarian hormones on behavioral indices of anxiety in female rats. Psychoneuroendocrinology 1996, 21: 609–20.

    PubMed  Google Scholar 

  38. Martínez-Mota L, Contreras CM, Saavedra M. Progesterone reduces immobility in rats forced to swim. Arch Med Res 1999, 30: 286–9.

    PubMed  Google Scholar 

  39. Ramirez SM, Bardi M, French JA, Brent L. Hormonal correlates of changes in interest in unrelated infants across the peripartum period in female baboons (Papio hamadryas anubis sp.). Horm Behav 2004, 46: 520–8.

    PubMed  Google Scholar 

  40. Walf AA, Paris JJ, Frye CA. Nociceptive and anxiety-like behavior in reproductively competent and reproductively senescent middle-aged rats. Gend Med 2009, 2: 235–46.

    Google Scholar 

  41. Frye CA, Walf AA. Changes in progesterone metabolites in the hippocampus can modulate open field and forced swim test behavior of proestrous rats. Horm Behav 2002, 41: 306–15.

    PubMed  Google Scholar 

  42. Martín-García E, Darbra S, Pallarés M. Neonatal finasteride induces anxiogenic-like profile and deteriorates passive avoidance in adulthood after intrahippocampal neurosteroid administration. Neuro — science 2008, 154: 1497–505.

    Google Scholar 

  43. Bitran D, Foley M, Audette D, Leslie N, Frye CA. Activation of peripheral mitochondrial benzodiazepine receptors in the hippocampus stimulates allopregnanolone synthesis and produces anxiolytic-like effects in the rat. Psychopharmacology (Berl) 2000, 151: 64–71.

    Google Scholar 

  44. Martín-García E, Pallarès M. Intrahippocampal nicotine and neurosteroids effects on the anxiety-like behaviour in voluntary and chronic alcohol-drinking rats. Behav Brain Res 2005, 164: 117–27.

    PubMed  Google Scholar 

  45. Engin E, Treit D. The anxiolytic-like effects of allopregnanolone vary as a function of intracerebral microinfusion site: the amygdala, medial prefrontal cortex, or hippocampus. Behav Pharmacol 2007, 18: 461–70.

    PubMed  Google Scholar 

  46. Adolphs R, Tranel D, Damasio AR. The human amygdala in social judgment. Nature 1998, 393: 470–4.

    PubMed  Google Scholar 

  47. Mojtabai R. Fregoli syndrome. Aust N Z J Psychiatry 1994, 28: 458–62.

    PubMed  Google Scholar 

  48. Oyebode F, Sargeant R. Delusional misidentification syndromes: A descriptive study. Psychopathology 1996, 29: 209–14.

    PubMed  Google Scholar 

  49. Signer SF. Localization and lateralization in the delusion of substitution: Capgras symptom and its variants. Psychopathology 1994, 27: 168–76.

    PubMed  Google Scholar 

  50. Bakker J, Honda S, Harada N, Balthazart J. The aromatase knockout (ArKO) mouse provides new evidence that estrogens are required for the development of the female brain. Ann N Y Acad Sci 2003, 1007: 251–62.

    PubMed  Google Scholar 

  51. Etgen AM, González-Flores O, Todd BJ. The role of insulin-like growth factor-I and growth factor-associated signal transduction pathways in estradiol and progesterone facilitation of female reproductive behaviors. Front Neuroendocrinol 2006, 27: 363–75.

    PubMed  Google Scholar 

  52. Levine JE, Chappell PE, Schneider JS, Sleiter NC, Szabo M. Progesterone receptors as neuroendocrine integrators. Front Neuroendocrinol 2001, 22: 69–106.

    PubMed  Google Scholar 

  53. Mong J, Easton A, Kow LM, Pfaff D. Neural, hormonal and genetic mechanisms for the activation of brain and behavior. Eur J Pharmacol 2003, 480: 229–31.

    PubMed  Google Scholar 

  54. Pfaff DW. Features of a hormone-driven defined neural circuit for a mammalian behavior. Principles illustrated, neuroendocrine syllogisms, and multiplicative steroid effects. Ann N Y Acad Sci 1989, 563: 131–47.

    PubMed  Google Scholar 

  55. Uphouse L. Female gonadal hormones, serotonin, and sexual receptivity. Brain Res Brain Res Rev 2000, 33: 242–57.

    PubMed  Google Scholar 

  56. Frye CA, Paris JJ, Rhodes ME. Increasing 3α,5α-THP following inhibition of neurosteroid biosynthesis in the ventral tegmental area reinstates anti-anxiety, social, and sexual behavior of naturally receptive rats. Reproduction 2009, 137: 119–28.

    PubMed Central  PubMed  Google Scholar 

  57. Compagnone NA, Mellon SH. Neurosteroids: Biosynthesis and function of these novel neuromodulators. Front Neuroendocrinol 2000, 21: 1–56.

    PubMed  Google Scholar 

  58. King SR, Ginsberg SD, Ishii T, Smith RG, Parker KL, Lamb DJ. The steroidogenic acute regulatory protein is expressed in steroidogenic cells of the day-old brain. Endocrinology 2004, 145: 4775–80.

    PubMed  Google Scholar 

  59. Mellon SH, Deschepper CF. Neurosteroid biosynthesis: genes for adrenal steroidogenic enzymes are expressed in the brain. Brain Res 1993, 629: 283–92.

    PubMed  Google Scholar 

  60. Agís-Balboa RC, Pinna G, Zhubi A, et al. Characterization of brain neurons that express enzymes mediating neurosteroid biosynthesis. Proc Natl Acad Sci U S A 2006, 103: 14602–7.

    PubMed Central  PubMed  Google Scholar 

  61. Bixo M, Andersson A, Winblad B, Purdy RH, Bäckström T. Progesterone, 5α-pregnane-3,20-dione and 3α-hydroxy-5α-pregnane-20-one in specific regions of the human female brain in different endocrine states. Brain Res 1997, 764: 173–8.

    PubMed  Google Scholar 

  62. Melcangi RC, Poletti A, Cavarretta I, et al. The 5α-reductase in the central nervous system: expression and modes of control. J Steroid Biochem Mol Biol 1998, 65: 295–9.

    PubMed  Google Scholar 

  63. Steckelbroeck S, Watzka M, Reichelt R, et al. Characterization of the 5α-reductase-3α-hydroxysteroid dehydrogenase complex in the human brain. J Clin Endocrinol Metab 2001, 86: 1324–31.

    PubMed  Google Scholar 

  64. Stoffel-Wagner B, Watzka M, Steckelbroeck S, et al. Allopregnanolone serum levels and expression of 5α-reductase and 3α-hydroxysteroid dehydrogenase isoforms in hippocampal and temporal cortex of patients with epilepsy. Epilepsy Res 2003, 54: 11–9.

    PubMed  Google Scholar 

  65. Bicíková M, Dibbelt L, Hill M, Hampl R, Stárka L. Allopregnanolone in women with premenstrual syndrome. Horm Metab Res 1998, 30: 227–30.

    PubMed  Google Scholar 

  66. Eser D, Romeo E, Baghai TC, et al. Neuroactive steroids as modulators of depression and anxiety. Neuroscience 2006, 138: 1041–8.

    PubMed  Google Scholar 

  67. Marx CE, Stevens RD, Shampine LJ, et al. Neuroactive steroids are altered in schizophrenia and bipolar disorder: relevance to pathophysiology and therapeutics. Neuropsychopharmacology 2006, 31: 1249–63.

    PubMed  Google Scholar 

  68. Frye CA. Neurosteroids: From basic research to clinical perspectives. In: Rubin RT, Pfaff DW eds. Hormone/behavior relations of clinical importance: Endocrine systems interacting with brain and behavior. San Diego: Academic Press. 2009, 395–416.

    Google Scholar 

  69. Guy AJ, Schuerch FS, Heffernan S, Thomson PC, O’Brien JK, McGreevy PD. The effect of medroxyprogesterone acetate on behavioural responses of captive female hamadryas baboons (Papio hamadryas). Anim Reprod Sci 2008, 108: 412–24.

    PubMed  Google Scholar 

  70. Eser D, Schüle C, Baghai TC, Romeo E, Rupprecht R. Neuroactive steroids in depression and anxiety disorders: clinical studies. Neuroendocrinology 2006, 84: 244–54.

    PubMed  Google Scholar 

  71. Marx CE, Duncan GE, Gilmore JH, Lieberman JA, Morrow AL. Olanzapine increases allopregnanolone in the rat cerebral cortex. Biol Psychiatry 2000, 47: 1000–4.

    PubMed  Google Scholar 

  72. Uzunova V, Sampson L, Uzunov DP. Relevance of endogenous 3α-reduced neurosteroids to depression and antidepressant action. Psychopharmacology (Berl) 2006, 186: 351–61.

    Google Scholar 

  73. Patchev VK, Shoaib M, Holsboer F, Almeida OF. The neurosteroid tetrahydroprogesterone counteracts corticotropin-releasing hormone-induced anxiety and alters the release and gene expression of corticotropin-releasing hormone in the rat hypothalamus. Neuroscience 1994, 62: 265–71.

    PubMed  Google Scholar 

  74. DeVries AC, DeVries MB, Taymans S, Carter CS. Modulation of pair bonding in female prairie voles (Microtus ochrogaster) by corticosterone. Proc Natl Acad Sci U S A 1995, 92: 7744–8.

    PubMed Central  PubMed  Google Scholar 

  75. Paxinos G, Watson C. The rat brain in stereotaxic coordinates. New York: Academic Press 1986.

    Google Scholar 

  76. Marshall JF, Teitelbaum P. Further analysis of sensory inattention following lateral hypothalamic damage in rats. J Comp Physiol Psychol 1974, 86: 375–95.

    PubMed  Google Scholar 

  77. Gómora-Arrati P, Beyer C, Lima-Hernández FJ, Gracia ME, Etgen AM, González-Flores O. GnRH mediates estrous behavior induced by ring A reduced progestins and vaginocervical stimulation. Behav Brain Res 2008, 187: 1–8.

    PubMed  Google Scholar 

  78. Pfaus JG, Jakob A, Kleopoulos SP, Gibbs RB, Pfaff DW. Sexual stimulation induces Fos immunoreactivity within GnRH neurons of the female rat preoptic area: interaction with steroid hormones. Neuroendocrinology 1994, 60: 283–90.

    PubMed  Google Scholar 

  79. Beyer C, González-Flores O, Ramírez-Orduña JM, González-Mariscal G. Indomethacin inhibits lordosis induced by ring A-reduced progestins: possible role of 3α-oxoreduction in progestin-facilitated lordosis. Horm Behav 1999, 35: 1–8.

    PubMed  Google Scholar 

  80. Byrns MC, Steckelbroeck S, Penning TM. An indomethacin analogue, N-(4-chlorobenzoyl)-melatonin, is a selective inhibitor of aldo-keto reductase 1C3 (type 2 3α-HSD, type 5 1 7β-HSD, and prostaglandin F synthase), a potential target for the treatment of hormone dependent and hormone independent malignancies Biochem Pharmacol 2008, 75: 484–93.

    PubMed Central  PubMed  Google Scholar 

  81. Blizard DA, Lippman HR, Chen JJ. Sex differences in open-field behavior in the rat: the inductive and activational role of gonadal hormones. Physiol Behav 1975, 14: 601–8.

    PubMed  Google Scholar 

  82. Frye CA, Petralia SM, Rhodes ME. Estrous cycle and sex differences in performance on anxiety tasks coincide with increases in hippocampal progesterone and 3α,5α-THP. Pharmacol Biochem Behav 2000, 67: 587–96.

    PubMed  Google Scholar 

  83. File SE. The interplay of learning and anxiety in the elevated plusmaze. Behav Brain Res 1993, 58: 199–202.

    PubMed  Google Scholar 

  84. File SE, Seth P. A review of 25 years of the social interaction test. Eur J Pharmacol 2003, 463: 35–53.

    PubMed  Google Scholar 

  85. Erskine MS. Effects of paced coital stimulation on estrus duration in intact cycling rats and ovariectomized and ovariectomized-adrenalectomized hormone-primed rats. Behav Neurosci 1985, 99: 151–61.

    PubMed  Google Scholar 

  86. Choi S, Dallman MF. Hypothalamic obesity: multiple routes mediated by loss of function in medial cell groups. Endocrinology 1999, 140: 4081–8.

    PubMed  Google Scholar 

  87. Kellogg CK, Frye CA. Endogenous levels of 5α-reduced progestins and androgens in fetal vs. adult rat brains. Brain Res Dev Brain Res 1999, 115: 17–24.

    PubMed  Google Scholar 

  88. Kessler RC, McGonagle KA, Zhao S, et al. Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States. Results from the National Comorbidity Survey. Arch Gen Psychiatry 1994, 51: 8–19.

    PubMed  Google Scholar 

  89. Wittchen HU, Essau CA, von Zerssen D, Krieg JC, Zaudig M. Lifetime and six-month prevalence of mental disorders in the Munich Follow-Up Study. Eur Arch Psychiatry Clin Neurosci 1992, 241: 247–58.

    PubMed  Google Scholar 

  90. Bäckström T, Andreen L, Birzniece V, et al. The role of hormones and hormonal treatments in premenstrual syndrome. CNS Drugs 2003, 17: 325–42.

    PubMed  Google Scholar 

  91. Chaudron LH, Klein MH, Remington P, Palta M, Allen C, Essex MJ. Predictors, prodromes and incidence of postpartum depression. J Psychosom Obstet Gynaecol 2001, 22: 103–12.

    PubMed  Google Scholar 

  92. Freeman EW, Frye CA, Rickels K, Martin PA, Smith SS. Allopregnanolone levels and symptom improvement in severe premenstrual syndrome. J Clin Psychopharmacol 2002, 22: 516–20.

    PubMed  Google Scholar 

  93. Soares CN, Cohen LS. The perimenopause, depressive disorders, and hormonal variability. Sao Paulo Med J 2001, 119: 78–83.

    PubMed  Google Scholar 

  94. Drevets WC. Orbitofrontal cortex function and structure in depression. Ann N Y Acad Sci 2007, 1121: 499–527.

    PubMed  Google Scholar 

  95. Milne A, MacQueen GM, Yucel K, Soreni N, Hall GB. Hippocampal metabolic abnormalities at first onset and with recurrent episodes of a major depressive disorder: a proton magnetic resonance spectroscopy study. Neuroimage 2009, 47: 36–41.

    PubMed  Google Scholar 

  96. Sasaki M, Shibata E, Tohyama K, et al. Monoamine neurons in the human brain stem: anatomy, magnetic resonance imaging findings, and clinical implications. Neuroreport 2008, 19: 1649–54.

    PubMed  Google Scholar 

  97. Andréen L, Nyberg S, Turkmen S, van Wingen G, Fernández G, Bäckström T. Sex steroid induced negative mood may be explained by the paradoxical effect mediated by GABAA modulators. Psychoneuroendocrinology 2009, 34: 1121–32.

    PubMed  Google Scholar 

  98. Protopopescu X, Tuescher O, Pan H, et al. Toward a functional neuroanatomy of premenstrual dysphoric disorder. J Affect Disord 2008, 108: 87–94.

    PubMed  Google Scholar 

  99. Shen H, Gong QH, Aoki C, et al. Reversal of neurosteroid effects at β4β2Δ GABAA receptors triggers anxiety at puberty. Nat Neurosci 2007, 10: 469–77.

    PubMed Central  PubMed  Google Scholar 

  100. Smith SS, Shen H, Gong QH, Zhou X. Neurosteroid regulation of GABA(A) receptors: Focus on the α4 and Δ subunits. Pharmacol Ther 2007, 116: 58–76.

    PubMed Central  PubMed  Google Scholar 

  101. Guidotti A, Dong E, Matsumoto K, Pinna G, Rasmusson AM, Costa E. The socially-isolated mouse: A model to study the putative role of allopregnanolone and 5α-dihydroprogesterone in psychiatric disorders. Brain Res Brain Res Rev 2001, 37: 110–5.

    PubMed  Google Scholar 

  102. Pinna G, Dong E, Matsumoto K, Costa E, Guidotti A. In socially isolated mice, the reversal of brain allopregnanolone down-regulation mediates the anti-aggressive action of fluoxetine. Proc Natl Acad Sci U S A 2003, 100: 2035–40.

    PubMed Central  PubMed  Google Scholar 

  103. Pinna G, Agis-Balboa RC, Pibiri F, Nelson M, Guidotti A, Costa E. Neurosteroid biosynthesis regulates sexually dimorphic fear and aggressive behavior in mice. Neurochem Res 2008, 33: 1990–2007.

    PubMed  Google Scholar 

  104. Altomare G, Capella GL. Depression circumstantially related to the administration of finasteride for androgenetic alopecia. J Dermatol 2002, 29: 665–9.

    PubMed  Google Scholar 

  105. Ciotta L, Cianci A, Calogero AE, et al. Clinical and endocrine effects of finasteride, a 5α-reductase inhibitor, in women with idiopathic hirsutism. Fertil Steril 1995, 64: 299–306.

    PubMed  Google Scholar 

  106. Sundström Poromaa I, Smith S, Gulinello M. GABA receptors, progesterone and premenstrual dysphoric disorder. Arch Womens Ment Health 2003, 6: 23–41.

    PubMed  Google Scholar 

  107. Kurumaji A, Nomoto H, Yoshikawa T, Okubo Y, Toru M. An association study between two missense variations of the benzodiazepine receptor (peripheral) gene and schizophrenia in a Japanese sample. J Neural Transm 2000, 107: 491–500.

    PubMed  Google Scholar 

  108. Ugale RR, Hirani K, Morelli M, Chopde CT. Role of neuroactive steroid allopregnanolone in antipsychotic-like action of olanzapine in rodents. Neuropsychopharmacology 2004, 29: 1597–609.

    PubMed  Google Scholar 

  109. Locchi F, Dall’olio R, Gandolfi O, Rimondini R. Olanzapine counteracts stress-induced anxiety-like behavior in rats. Neurosci Lett 2008, 438: 146–9.

    PubMed  Google Scholar 

  110. Griffin LD, Mellon SH. Selective serotonin reuptake inhibitors directly alter activity of neurosteroidogenic enzymes. Proc Natl Acad Sci U S A 1999, 96: 13512–7.

    PubMed Central  PubMed  Google Scholar 

  111. Trauger JW, Jiang A, Stearns BA, LoGrasso PV. Kinetics of allopregnanolone formation catalyzed by human 3α-hydroxysteroid dehydrogenase type III (AKR1C2). Biochemistry 2002, 41: 13451–9.

    PubMed  Google Scholar 

  112. Ströhle A, Romeo E, di Michele F, Pasini A, Yassouridis A, Holsboer F, Rupprecht R. GABAA receptor-modulating neuroactive steroid composition in patients with panic disorder before and during paroxetine treatment. Am J Psychiatry 2002, 159: 145–7.

    PubMed  Google Scholar 

  113. Gracia CR, Freeman EW, Sammel MD, Lin H, Sheng L, Frye CA. Allopregnanolone levels before and after selective serotonin reuptake inhibitor treatment of premenstrual symptoms. J Clin Psychopharmacol 2009, 29: 403–5.

    PubMed  Google Scholar 

  114. McCarthy MM, Wright CL, Schwarz JM. New tricks by an old dogma: mechanisms of the Organizational/Activational Hypothesis of steroid-mediated sexual differentiation of brain and behavior. Horm Behav 2009, 55: 655–65.

    PubMed Central  PubMed  Google Scholar 

  115. Holmes S. Treatment of male sexual dysfunction. Br Med Bull 2000, 56: 798–808.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Frye PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frye, C.A., Paris, J.J. Progesterone turnover to its 5α-reduced metabolites in the ventral tegmental area of the midbrain is essential for initiating social and affective behavior and progesterone metabolism in female rats. J Endocrinol Invest 34, e188–e199 (2011). https://doi.org/10.3275/7334

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3275/7334

Key-words

Navigation