Skip to main content

Advertisement

Log in

Evidence that herpes simplex virus DNA derived from quiescently infected cellsin vitro, and latently infected cellsin vivo, is physically damaged

  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

Using polymerase chain reaction (PCR) and alkaline gel electrophoresis, the authors show that, compared with DNA derived from virions used to establish infection, herpes simplex virus DNA derived from quiescently infected rat pheochromocytoma (PC12) cells in culture accumulates alkaline-labile lesions. That is, compared with equivalent amounts of virion DNA, viral DNA from nerve growth factor-differentiated long-term infected cells in culture is consistently 3 to 10 times more refractory to amplification by PCR. Despite using equal mole amounts of DNA isolated from quiescently infected cells (determined by quantitative Southern blots), DNA from quiescently infected cells could not be detected by PCR under conditions in which the virionderived DNA was easily detected. Refractoriness to PCR was confirmed by analysis with a ligation-mediated PCR technique. The refractoriness was not the result of genomic circularization. The refractoriness was, however, related to the time that the quiescently infected cells had been maintained in culture. The refractoriness to PCR was taken as an indication that the viral DNA was damaged. This hypothesis was confirmed by showing that viral DNA from quiescently infected PC12 cells accumulated alkaline-labile DNA lesions, as determined by alkaline gel electrophoresis. The phenomenon was not limited to tissue culture, because viral DNA derived from the ganglia of latently infected mice is also 3 to 10 times more refractory to amplification than are equivalent amounts of virion-derived genomes. Taken together, these results represent the first evidence that herpes simplex virus DNA is physically damaged as a function of long-term infection. Implications for viral reactivation and pathogenesis are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abner CW, McKinnon PJ (2004). The DNA double-strand break response in the nervous system.DNA Repair (Amst) 3: 1141–1147.

    Article  CAS  Google Scholar 

  • Batterson W, Furlong D, Roizman B (1983). Molecular genetics of herpes simplex virus. VIII. Further characterization of a temperature-sensitive mutant defective in release of viral DNA and in other stages of the viral reproductive cycle.J Virol 45: 397–407.

    PubMed  CAS  Google Scholar 

  • Brooks PJ (2002). DNA repair in neural cells: basic science and clinical implications.Mutat Res 509: 93–108.

    PubMed  CAS  Google Scholar 

  • Cline SD, Hanawalt PC (2003). Who’s on first in the cellular response to DNA damage?Nat Rev Mol Cell Biol 4: 361–372.

    Article  PubMed  CAS  Google Scholar 

  • Dammann R, Pfeifer GP (1997). Lack of gene- and strandspecific DNA repair in RNA polymerase III-transcribed human tRNA genes.Mol Cell Biol 17: 219–229.

    PubMed  CAS  Google Scholar 

  • Ecker JR, Hyman RW (1981). Analysis of interruptions in the phosphodiester backbone of herpes simplex virus DNA.Virology 110: 213–216.

    Article  PubMed  CAS  Google Scholar 

  • Francisconi S, Codenotti M, Ferrari-Toninelli G, Uberti D, Memo M (2005). Preservation of DNA integrity and neuronal degeneration.Brain Res Brain Res Rev 48: 347–351.

    Article  PubMed  CAS  Google Scholar 

  • Fraser NW, Lawrence WC, Wroblewska Z, Gilden DH, Koprowski H (1981). Herpes simplex type 1 DNA in human brain tissue.Proc Natl Acad Sci U S A 78: 6461–6465.

    Article  PubMed  CAS  Google Scholar 

  • Frenkel N, Roizman B (1972). Separation of the herpesvirus deoxyribonucleic acid duplex into unique fragments and intact strand on sedimentation in alkaline gradients.J Virol 10: 565–572.

    PubMed  CAS  Google Scholar 

  • Greene LA, Tischler AS (1976). Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor.Proc Natl Acad Sci U S A 73: 2424–2428.

    Article  PubMed  CAS  Google Scholar 

  • Hu W, Feng Z, Chasin LA, Tang MS (2002). Transcription-coupled and transcription-independent repair of cyclobutane pyrimidine dimers in the dihydrofolate reductase gene.J Biol Chem 277: 38305–38310.

    Article  PubMed  CAS  Google Scholar 

  • Hyman RW, Oakes JE, Kudler L (1977). In vitro repair of the preexisting nicks and gaps in herpes simplex virus DNA.Virology 76: 286–294.

    Article  PubMed  CAS  Google Scholar 

  • Iwahori S, Shirata N, Kawaguchi Y, Weller SK, Sato Y, Kudoh A, Nakayama S, Isomura H, Tsurumi T (2007). Enhanced phosphorylation of transcription factor sp1 in response to herpes simplex virus type 1 infection is dependent on the ataxia telangiectasia-mutated protein.J Virol 81: 9653–9664.

    Article  PubMed  CAS  Google Scholar 

  • Jensen L, Linn S (1988). A reduced rate of bulky DNA adduct removal is coincident with differentiation of human neuroblastoma cells induced by nerve growth factor.Mol Cell Biol 8: 3964–3968.

    PubMed  CAS  Google Scholar 

  • Kennedy PG, Al-Saadi SA, Clements GB (1983). Reactivation of latent herpes simplex virus from dissociated identified dorsal root ganglion cells in culture.J Gen Virol 64(Pt 7): 1629–1635.

    Article  PubMed  Google Scholar 

  • Kieff ED, Bachenheimer SL, Roizman B (1971). Size, composition, and structure of the deoxyribonucleic acid of herpes simplex virus subtypes 1 and 2.J Virol 8: 125–132.

    PubMed  CAS  Google Scholar 

  • Lawley PD, Brookes P (1963). Further studies on the alkylation of nucleic acids and their constituent nucleotides.Biochem J 89: 127–138.

    PubMed  CAS  Google Scholar 

  • Lilley CE, Carson CT, Muotri AR, Gage FH, Weitzman MD (2005). DNA repair proteins affect the lifecycle of herpes simplex virus 1.Proc Natl Acad Sci U S A 102: 5844–5849.

    Article  PubMed  CAS  Google Scholar 

  • Lilley CE, Chaurushiya MS, Boutell C, Landry S, Suh J, Panier S, Everett RD, Stewart GS, Durocher D, Weitzman MD (2010). A viral E3 ligase targets RNF8 and RNF168 to control histone ubiquitination and DNA damage responses.EMBO J 29: 943–955.

    Article  PubMed  CAS  Google Scholar 

  • Lilley CE, Schwartz RA, Weitzman MD (2007). Using or abusing: viruses and the cellular DNA damage response.Trends Microbiol 15: 119–126.

    Article  PubMed  CAS  Google Scholar 

  • Maggioncalda J, Mehta A, Su YH, Fraser NW, Block TM (1996). Correlation between herpes simplex virus type 1 rate of reactivation from latent infection and the number of infected neurons in trigeminal ganglia.Virology 225: 72–81.

    Article  PubMed  CAS  Google Scholar 

  • McMurray CT (2005). To die or not to die: DNA repair in neurons.Mutat Res 577: 260–274.

    PubMed  CAS  Google Scholar 

  • Mitchell BM, Bloom DC, Cohrs RJ, Gilden DH, Kennedy PG (2003). Herpes simplex virus-1 and varicella-zoster virus latency in ganglia.J NeuroVirol 9: 194–204.

    PubMed  CAS  Google Scholar 

  • Miyamae Y, Iwasaki K, Kinae N, Tsuda S, Murakami M, Tanaka M, Sasaki YF (1997). Detection of DNA lesions induced by chemical mutagens using the single-cell gel electrophoresis (comet) assay. 2. Relationship between DNA migration and alkaline condition.Mutat Res 393: 107–113.

    PubMed  CAS  Google Scholar 

  • Moxley MJ, Block TM, Liu HC, Fraser NW, Perng GC, Wechsler SL, Su YH (2002). Herpes simplex virus type 1 infection prevents detachment of nerve growth factor-differentiated PC12 cells in culture.J Gen Virol 83: 1591–1600.

    PubMed  CAS  Google Scholar 

  • Muylaert I, Elias P (2007). Knockdown of DNA ligase IV/XRCC4 by RNA interference inhibits herpes simplex virus type I DNA replication.J Biol Chem 282: 10865–10872.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura J, Swenberg JA (1999). Endogenous apurinic/apyrimidinic sites in genomic DNA of mammalian tissues.Cancer Res 59: 2522–2526.

    PubMed  CAS  Google Scholar 

  • Nouspikel T, Hanawalt PC (2000). Terminally differentiated human neurons repair transcribed genes but display attenuated global DNA repair and modulation of repair gene expression.Mol Cell Biol 20: 1562–1570.

    Article  PubMed  CAS  Google Scholar 

  • Nouspikel T, Hanawalt PC (2002). DNA repair in terminally differentiated cells.DNA Repair (Amst) 1: 59–75.

    Article  CAS  Google Scholar 

  • Pfeifer GP, Dammann R (1999). Measuring the formation and repair of UV photoproducts by ligation-mediated PCR.Methods Mol Biol 113: 213–226.

    PubMed  CAS  Google Scholar 

  • Renlund M, Chester MA, Lundblad A, Aula P, Raivio KO, Autio S, Koskela SL (1979). Increased urinary excretion of free N-acetylneuraminic acid in thirteen patients with Salla disease.Eur J Biochem 101: 245–250.

    Article  PubMed  CAS  Google Scholar 

  • Roizman B, Knipe DM, Whitley RJ (2007). Herpes simplex viruses. In:Fields virology. Knipe DM, Howley PM (eds). Philadelphia, PA: Lippincott Williams & Wilkins, pp 2501–2601.

    Google Scholar 

  • Roizman B, Sears AE (1987). An inquiry into the mechanisms of herpes simplex virus latency.Annu Rev Microbiol 41: 543–571.

    Article  PubMed  CAS  Google Scholar 

  • Shirata N, Kudoh A, Daikoku T, Tatsumi Y, Fujita M, Kiyono T, Sugaya Y, Isomura H, Ishizaki K, Tsurumi T (2005). Activation of ataxia telangiectasiamutated DNA damage checkpoint signal transduction elicited by herpes simplex virus infection.J Biol Chem 280: 30336–30341.

    Article  PubMed  CAS  Google Scholar 

  • Sikorsky JA, Primerano DA, Fenger TW, Denvir J (2004). Effect of DNA damage on PCR amplification efficiency with the relative threshold cycle method.Biochem Biophys Res Commun 323: 823–830.

    Article  PubMed  CAS  Google Scholar 

  • Su YH, Meegalla RL, Chowhan R, Cubitt C, Oakes JE, Lausch RN, Fraser NW, Block TM (1999). Human corneal cells and other fibroblasts can stimulate the appearance of herpes simplex virus from quiescently infected PC12 cells.J Virol 73: 4171–4180.

    PubMed  CAS  Google Scholar 

  • Su YH, Moxley M, Kejariwal R, Mehta A, Fraser NW, Block TM (2000). The HSV 1 genome in quiescently infected NGF differentiated PC12 cells cannot be stimulated by HSV superinfection.J NeuroVirol 6: 341–349.

    Article  PubMed  CAS  Google Scholar 

  • Su YH, Moxley MJ, Ng AK, Lin J, Jordan R, Fraser NW, Block TM (2002). Stability and circularization of herpes simplex virus type 1 genomes in quiescently infected PC12 cultures.J Gen Virol 83: 2943–2950.

    PubMed  CAS  Google Scholar 

  • Sutherland BM, Bennett PV, Sutherland JC (1999). DNA damage quantification by gel electrophoresis.Methods Mol Biol 113: 183–202.

    PubMed  CAS  Google Scholar 

  • Sutherland BM, Georgakilas AG, Bennett PV, Laval J, Sutherland JC (2003). Quantifying clustered DNA damage induction and repair by gel electrophoresis, electronic imaging and number average length analysis.Mutat Res 531: 93–107.

    PubMed  CAS  Google Scholar 

  • Tu Y, Tornaletti S, Pfeifer GP (1996). DNA repair domains within a human gene: selective repair of sequences near the transcription initiation site.EMBO J 15: 675–683.

    PubMed  CAS  Google Scholar 

  • Wagner EK, Bloom DC (1997). Experimental investigation of herpes simplex virus latency.Clin Microbiol Rev 10: 419–443.

    PubMed  CAS  Google Scholar 

  • Whitley RJ, Gnann J (1993). The epidemiology and clinical manifestations of herpes simplex virus infections. In:The Human herpes viruses. Roizman B, Whitley RJ (eds). New York: Raven Press, pp 69–105.

    Google Scholar 

  • Wilkie NM (1973). The synthesis and substructure of herpesvirus DNA: the distribution of alkali-labile single strand interruptions in HSV-1 DNA.J Gen Virol 21: 453–467.

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson DE, Weller SK (2004). Recruitment of cellular recombination and repair proteins to sites of herpes simplex virus type 1 DNA replication is dependent on the composition of viral proteins within prereplicative sites and correlates with the induction of the DNA damage response.J Virol 78: 4783–4796.

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson DE, Weller SK (2005). Inhibition of the herpes simplex virus type 1 DNA polymerase induces hyperphosphorylation of replication protein A and its accumulation at S-phase-specific sites of DNA damage during infection.J Virol 79: 7162–7171.

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson DE, Weller SK (2006). Herpes simplex virus type I disrupts the ATR-dependent DNA-damage response during lytic infection.J Cell Sci 119: 2695–2703.

    Article  PubMed  CAS  Google Scholar 

  • Wood RD, Mitchell M, Sgouros J, Lindahl T (2001). Human DNA repair genes.Science 291: 1284–1289.

    Article  PubMed  CAS  Google Scholar 

  • Zheng Y, Pao A, Adair GM, Tang M (2001). Cyclobutane pyrimidine dimers and bulky chemical DNA adducts are efficiently repaired in both strands of either a transcriptionally active or promoter-deleted APRT gene.J Biol Chem 276: 16786–16796.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy M Block.

Additional information

This work was supported by National Institutes of Health grant NS 33768 and an appropriation from The Commonwealth of Pennsylvania through The Institute for Hepatitis and Virus Research.

This paper was first published online on Early Online on 23 September 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Millhouse, S., Su, YH., Zhang, X. et al. Evidence that herpes simplex virus DNA derived from quiescently infected cellsin vitro, and latently infected cellsin vivo, is physically damaged. Journal of NeuroVirology 16, 384–398 (2010). https://doi.org/10.3109/13550284.2010.515651

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.3109/13550284.2010.515651

Keywords

Navigation