Skip to main content

Advertisement

Log in

Chlamydia pneumoniae—specific intrathecal oligoclonal antibody response is predominantly detected in a subset of multiple sclerosis patients with progressive forms

  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

The purpose of this study was to verify the actual involvement of Chlamydia pneumoniae in multiple sclerosis (MS) by the evaluation of its specific intrathecal humoral immune response in MS. We measured by enzyme-linked immunosorbent assay (ELISA) technique cerebrospinal fluid (CSF) and serum levels of anti-C. pneumoniae immunoglobulin G (IgG) in 27 relapsing-remitting (RR), 9 secondary progressive (SP), and 5 primary progressive (PP) MS patients, grouped according to clinical and magnetic resonance imaging (MRI) evidence of disease activity. Twenty-one patients with other inflammatory neurological disorders (OIND) and 21 with noninflammatory neurological disorders (NIND) were used as controls. Quantitative intrathecal synthesis of anti-C. pneumoniae IgG was determined by antibody-specific index (ASI), whereas the presence of C. pneumoniae—specific CSF oligoclonal IgG bands was assessed by antigen-specific immunoblotting. ASI values indicative of C. pneumoniae—specific intrathecal IgG synthesis were present in a small proportion of MS (29.3%), OIND (33.3%), and NIND (4.8%) patients and were significantly more frequent (P <.05) in total MS and in OIND than in NIND and in SP (P <.01) and PP MS (P <.05) than in RR MS. C. pneumoniae—specific CSF-restricted OCB were detected only in three SP, one PP, and one RR MS patients. These findings suggest that an intrathecal production of anti-C. pneumoniae IgG is part of humoral polyreactivity driven by MS chronic brain inflammation. However, an intrathecal release of C. pneumoniae—specific oligoclonal IgG can occur in a subset of patients with MS progressive forms in whom a C. pneumoniae— persistent brain infection may play a pathogenetic role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Archelos JJ, Hartung HP (2000). Pathogenetic role of auto-antibodies in neurological diseases. Trends Neurosci 23: 317–327.

    Article  CAS  PubMed  Google Scholar 

  • Bagos PG, Nikolopoulos G, Ioannidis A (2006). Chlamydia pneumoniae infection and the risk of multiple sclerosis: a meta-analysis. Mult Scler 12: 397–411.

    Article  CAS  PubMed  Google Scholar 

  • Balin BJ, Gérard HC, Arking EJ, Appelt DM, Branigan PJ, Abrams JT, Whittum-Hudson JA, Hudson AP (1998). Identification and localization of Chlamydia pneumoniae in the Alzheimer’s brain. Med Microbiol Immunol 187: 23–42.

    Article  CAS  PubMed  Google Scholar 

  • Casetta I, Granieri E (2000). Clinical infections and multiple sclerosis: contribution from analytical epidemiology. J NeuroVirol 6(Suppl 2): S147-S151.

    PubMed  Google Scholar 

  • Chapman MD, Thompson EJ, Candler PM, Dale RC, Church AJ, Giovannoni G (2007). Quantitative demonstration of intrathecal synthesis of high affinity immunoglobulin G in herpes simplex encephalitis using affinity-mediated immunoblotting. J Neuroimmunol 185: 130–135.

    Article  CAS  PubMed  Google Scholar 

  • Conrad AJ, Chiang EY, Andeen LE, Avolio C, Walker SM, Baumhefner RW, Tourtellotte WW (1994). Quantitation of intrathecal measles virus IgG antibody synthesis rate: subacute sclerosing panencephalitis and multiple sclerosis. J Neuroimmunol 54: 99–108.

    Article  CAS  PubMed  Google Scholar 

  • Contini C, Cultrera R, Seraceni S, Castellazzi M, Granieri E, Fainardi E (2004). Cerebrospinal fluid molecular demonstration of Chlamydia pneumoniae DNA is associated to clinical and brain magnetic resonance imaging activity in a subset of patients with relapsing-remitting multiple sclerosis. Mult Scler 10: 360–369.

    Article  CAS  PubMed  Google Scholar 

  • Contini C, Fainardi E, Seraceni S, Granieri E, Castellazzi M, Cultrera R (2003). Molecular identification and antibody testing of Chlamydophila pneumoniae in a subgroup of patients with HIV-associated dementia complex. Preliminary results. J Neuroimmunol 136: 172–177.

    Article  CAS  PubMed  Google Scholar 

  • Contini C, Seraceni S, Castellazzi M, Granieri E, Fainardi E (2008). Chlamydophila pneumoniae DNA and mRNA transcript levels in peripheral blood mononuclear cells and cerebrospinal fluid of patients with multiple sclerosis. Neurosci Res 62: 58–61.

    Article  CAS  PubMed  Google Scholar 

  • Danesh J, Collins R, Peto R (1997). Chronic infections and coronary heart disease: is there a link? Lancet 350: 430–436.

    Article  CAS  PubMed  Google Scholar 

  • Derfuss T, Gürkov R, Bergh FT, Goebels N, Hartmann M, Barz C, Wilske B, Autenrieth I, Wick M, Hohlfeld R, Meinl E (2001). Intrathecal antibody production against Chlamydia pneumoniae in multiple sclerosis is part of a polyspecific immune response. Brain 124: 1325–1335.

    Article  CAS  PubMed  Google Scholar 

  • Dong-Si T, Weber J, Liu YB, Buhmann C, Bauer H, Bendl C, Schnitzler P, Grond-Ginsbach C, Grau, AJ (2004). Increased prevalence and gene transcription by Chlamydia pneumoniae in cerebrospinal fluid of patients with relapsing-remitting multiple sclerosis. J Neurol 251: 542–547.

    Article  CAS  PubMed  Google Scholar 

  • Dörries R, Kaiser R, ter Meulen V (1989). Human immunodeficiency virus infection: affinity-mediated immunoblot detects intrathecal synthesis of oligoclonal IgG specific for individual viral protein. AIDS Res Hum Retroviruses 5: 303–310.

    Article  PubMed  Google Scholar 

  • Dreses-Werringloer U, Bhuiyan M, Zhao Y, Gérard HC, Whittum-Hudson JA, Hudson AP (2009). Initial characterization of Chlamydophila (Chlamydia) pneumoniae cultured from the late-onset Alzheimer brain. Int J Med Microbiol 299: 187–201.

    Article  CAS  PubMed  Google Scholar 

  • Fainardi E, Contini C, Benassi N, Bedetti A, Castellazzi M, Vaghi L, Govoni V, Paolino, E, Balboni P, Granieri E (2001). Assessment of HIV intrathecal humoral immune response in AIDS-related neurological disorders. J Neuroimmunol 119: 278–86.

    Article  CAS  PubMed  Google Scholar 

  • Fainardi E, Castellazzi M, Casetta I, Cultrera R, Vaghi L, Granieri E, Contini C (2004). Intrathecal production of Chlamydia pneumoniae-specific high-affinity antibodies is significantly associated to a subset of multiple sclerosis patients with progressive forms. J Neurol Sci 217: 181–188.

    Article  CAS  PubMed  Google Scholar 

  • Fainardi E, Castellazzi M, Saraceni S, Granieri E, Contini C (2008). Under the microscope: focus on Chlamydia pneumoniae infection and multiple sclerosis. Curr Neurovasc Res 5: 60–70.

    Article  CAS  PubMed  Google Scholar 

  • Franciotta D, Avolio C, Capello E, Lolli F, AINI participating members (2005a). Consensus recommendations of the Italian Association for Neuroimmunology for immunochemical cerebrospinal fluid examination. J Neurol Sci 237: 5–11.

    Article  PubMed  Google Scholar 

  • Franciotta D, Cardini E, Bergamaschi R, Grimaldi LM, Androni L, Cosi V (2005b). Analysis of Chlamydia Pneumoniae-specific oligoclonal bands in multiple sclerosis and other neurological diseases. Acta Neurol Scand 112: 238–241.

    Article  CAS  PubMed  Google Scholar 

  • Gérard HC, Dreses-Werringloer U, Wildt KS, Deka S, Oszust C, Balin BJ, Frey WH 2nd, Bordayo EZ, Whittum-Hudson JA, Hudson AP (2006). Chlamydophila (Chlamydia) pneumoniae in the Alzheimer’s brain. FEMS Immunol Med Microbiol 48: 355–366.

    Article  PubMed  Google Scholar 

  • Gilden DH (2005). Infectious causes of multiple sclerosis. Lancet Neurol 4: 195–202.

    CAS  PubMed  Google Scholar 

  • Grayston JT, Kuo CC, Coulson AS, Campbell LA, Lawrence RD, Lee MJ, Strandness ED, Wang SP (1995). Chlamydia pneumoniae (TWAR) in atherosclerosis of the carotid artery. Circulation 92: 3397–3400.

    CAS  PubMed  Google Scholar 

  • Hauser SL, Oksenberg JR (2006). The neurobiology of multiple sclerosis: genes, inflammation, and neurodegeneration. Neuron 52: 61–76.

    Article  CAS  PubMed  Google Scholar 

  • Kermode AG, Thompson AJ, Tofts P, MacManus DG, Kendall BE, Kingsley DPE, Moseley IF, Rudge P, McDonald WI (1990). Breakdown of blood-brain barrier precedes symptoms and other MRI signs of new lesions in multiple sclerosis. Brain 113: 1477–1489.

    Article  PubMed  Google Scholar 

  • Krametter D, Niederwieser G, Berghold A, Birnbaum G, Strasser-Fuchs S, Hartung HP, Archelos JJ (2001). Chlamydia pneumoniae in multiple sclerosis: humoral immune responses in serum and cerebrospinal fluid and correlation with disease activity marker. Mult Scler 7: 13–18.

    Article  CAS  PubMed  Google Scholar 

  • Krüll M, Kramp J, Petrov T, Klucken AC, Hocke AC, Walter C, Schmeck B, Seybold J, Maass M, Ludwig S, Kuipers JG, Suttorp N, Hippenstiel S (2004). Differences in cell activation by Chlamydophila pneumoniae and Chlamydia trachomatis infection in human endothelial cells. Infect Immun 72: 6615–6621.

    Article  PubMed  Google Scholar 

  • Kurtzke JF (1983). Rating neurological impairment in multiple sclerosis: an expanded disability scale (EDSS). Neurology 33: 1444–1452.

    CAS  PubMed  Google Scholar 

  • Lipton HL, Liang Z, Hertzler S, Son K-N (2007). A specific viral cause of multiple sclerosis: one virus, one disease. Ann Neurol 61: 514–523.

    Article  CAS  PubMed  Google Scholar 

  • Lublin DF, Reingold SC 1996. Defining the clinical course of multiple sclerosis: results of an international survey. Neurology 46: 907–911.

    CAS  PubMed  Google Scholar 

  • McDonald WI, Compston A, Edan G, Goodkin D, Hartung HP, Lublin FD, McFarland HF, Paty DW, Polman CH, Reingold SC, Sandberg-Wollheim M, Sibley W, Thompson A, van den Noort S, Weinshenker BY, Wolinsky JS (2001). Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the Diagnosis of Multiple Sclerosis. Ann Neurol 50: 121–127.

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay S, Clark AP, Sullivan EsD, Miller RDRD, Summersgill JT (2004). Detailed protocol for purification of Chlamydia pneumoniae elementary bodies. J Clin Microbiol 42: 3288–3290.

    Article  PubMed  Google Scholar 

  • Pachner AR, Li L, Narayan K (2007). Intrathecal antibody production in an animal model of multiple sclerosis. J Neuroimmunol 185: 57–63.

    Article  CAS  PubMed  Google Scholar 

  • Poser CM, Paty DW, Scheimberger L, McDonald WI, Davis FA, Ebers GC, Johnson KP, Sibley WA, Silberberg DH, Tourtellotte WW (1983). New diagnostic criteria for MS: guidelines for research protocols. Ann Neurol 13: 227–231.

    Article  CAS  PubMed  Google Scholar 

  • Reiber H, Lange P (1991). Quantification of virus-specific antibodies in cerebrospinal fluid and serum: sensitive and specific detection of antibody synthesis in brain. Clin Chem 37: 1153–1160.

    CAS  PubMed  Google Scholar 

  • Reiber H, Ungefehr S, Jacobi C (1998). The intrathecal, polyspecific and oligoclonal immune response in multiple sclerosis. Mult Scler 4: 111–117.

    CAS  PubMed  Google Scholar 

  • Rostasy K, Reiber H, Pohl D, Lange P, Ohlenbusch A, Eiffert H, Maass M, Hanefeld F (2003). Chlamydia pneumoniae in children with MS. Frequency and quantity of intrathecal antibodies. Neurology 61: 125–128.

    CAS  PubMed  Google Scholar 

  • Salden HJM, Bas BM, Hermas JT, Janson PC (1988). Analytical performance of the three commercially available nephelometers compared quantifying protein in serum and cerebrospinal fluid. Clin Chem 34: 1594–1596.

    CAS  PubMed  Google Scholar 

  • Smith-Jensen T, Burgoon MP, Anthony J, Kraus H, Gilden DH, Owens GP (2000). Comparison of immuno-globulin G heavy-chain sequences in MS and SSPE brains reveals an antigen-driven response. Neurology 54: 1227–1232.

    CAS  PubMed  Google Scholar 

  • Sommer K, Njau F, Wittkop U, Thalmann J, Bartling G, Wagner A, Klos A (2009). Identification of high- and low-virulent strains of Chlamydia pneumoniae by their characterization in a mouse pneumonia model. FEMS Immunol Med Microbiol 55: 206–214.

    Article  CAS  PubMed  Google Scholar 

  • Sriram S, Stratton CW, Yao SY, Tharp A, Ding L, Bannan JD, Mitchell WM (1999). Chlamydia pneumoniae infection of the central nervous system in multiple sclerosis. Ann Neurol 46: 6–14.

    Article  CAS  PubMed  Google Scholar 

  • Tibbling G, Link H, Ohman S (1977). Principles of albumin and IgG analyses in neurological disorders: I. Establishment of reference value. Scand J Clin Lab Invest; 37: 385–390.

    CAS  PubMed  Google Scholar 

  • Thompson EJ (2004). Quality versus quantity: which is better for cerebrospinal fluid IgG? Clin Chem 50: 1721–1722.

    Article  CAS  PubMed  Google Scholar 

  • Yao SY, Stratton CW, Mitchell WM, Sriram S (2001). CSF oligoclonal bands in MS include antibodies against Chlamydiophila antigens. Neurology 56: 1168–1176.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Fainardi.

Additional information

The study was supported by Fondazione Cassa di Risparmio di Ferrara, Italy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fainardi, E., Castellazzi, M., Tamborino, C. et al. Chlamydia pneumoniae—specific intrathecal oligoclonal antibody response is predominantly detected in a subset of multiple sclerosis patients with progressive forms. Journal of NeuroVirology 15, 425–433 (2009). https://doi.org/10.3109/13550280903475580

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.3109/13550280903475580

Keywords

Navigation