Skip to main content

Advertisement

Log in

A limited innate immune response is induced by a replication-defective herpes simplex virus vector following delivery to the murine central nervous system

  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

Herpes simplex virus type 1 (HSV-1)—based vectors readily transduce neurons and have a large payload capacity, making them particularly amenable to gene therapy applications within the central nervous system (CNS). Because aspects of the host responses to HSV-1 vectors in the CNS are largely unknown, we compared the host response of a nonreplicating HSV-1 vector to that of a replication-competent HSV-1 virus using microarray analysis. In parallel, HSV-1 gene expression was tracked using HSV-specific oligonucleotide-based arrays in order to correlate viral gene expression with observed changes in host response. Microarray analysis was performed following stereotactic injection into the right hippocampal formation of mice with either a replication-competent HSV-1 or a nonreplicating recombinant of HSV-1, lacking the ICP4 gene (ICP4−). Genes that demonstrated a significant change (P < .001) in expression in response to the replicating HSV-1 outnumbered those that changed in response to mock or nonreplicating vector by approximately 3-fold. Pathway analysis revealed that both the replicating and nonreplicating vectors induced robust antigen presentation but only mild interferon, chemokine, and cytokine signaling responses. The ICP4− vector was restricted in several of the Toll-like receptor-signaling pathways, indicating reduced stimulation of the innate immune response. These array analyses suggest that although the nonreplicating vector induces detectable activation of immune response pathways, the number and magnitude of the induced response is dramatically restricted compared to the replicating vector, and with the exception of antigen presentation, host gene expression induced by the nonreplicating vector largely resembles mock infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguilar JS, Devi-Rao GV, Rice MK, Sunabe J, Ghazal P, Wagner EK (2006). Quantitative comparison of the HSV-1 and HSV-2 transcriptomes using DNA microarray analysis. Virology 348: 233–241.

    Article  CAS  PubMed  Google Scholar 

  • Aguilar JS, Ghazal P, Wagner EK (2005). Design of a herpes simplex virus type 2 long oligonucleotide-based microarray: global analysis of HSV-2 transcript abundance during productive infection. Methods Mol Biol 292: 423–448.

    CAS  PubMed  Google Scholar 

  • Amici C, Belardo G, Rossi A, Santoro MG (2001). Activation of I kappa b kinase by herpes simplex virus type 1. A novel target for anti-herpetic therapy. J Biol Chem 276: 28759–28766.

    Article  CAS  PubMed  Google Scholar 

  • Banati RB (2003). Neuropathological imaging: in vivo detection of glial activation as a measure of disease and adaptive change in the brain. Br Med Bull 65: 121–131.

    Article  PubMed  Google Scholar 

  • Bloom DC, Lokensgard JR, Maidment NT, Feldman LT, Stevens JG (1994). Long-term expression of genes in vivo using non-replicating HSV vectors. Gene Therapy 1(Suppl 1): S36-S38.

    PubMed  Google Scholar 

  • Bowers WJ, Olschowka JA, Federoff HJ (2003). Immune responses to replication-defective HSV-1 type vectors within the CNS: implications for gene therapy. Gene Therapy 10: 941–945.

    Article  CAS  PubMed  Google Scholar 

  • Brukman A, Enquist LW (2006). Suppression of the interferon-mediated innate immune response by pseudorabies virus. J Virol 80: 6345–6356.

    Article  CAS  PubMed  Google Scholar 

  • Burton EA, Fink DJ, Glorioso JC (2002). Gene delivery using herpes simplex virus vectors. DNA Cell Biol 21: 915–936.

    Article  CAS  PubMed  Google Scholar 

  • Calvano SE, Xiao W, Richards DR, Felciano RM, Baker HV, Cho RJ, Chen RO, Brownstein BH, Cobb JP, Tschoeke SK, et al. (2005). A network-based analysis of systemic inflammation in humans. Nature 437: 1032–1037.

    Article  CAS  PubMed  Google Scholar 

  • Chirgwin JM, Przybyla AE, MacDonald RJ, Rutter WJ (1979). Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18: 5294–5299.

    Article  CAS  PubMed  Google Scholar 

  • DeLuca NA, McCarthy AM, Schaffer PA (1985). Isolation and characterization of deletion mutants of herpes simplex virus type 1 in the gene encoding immediate-early regulatory protein ICP4. J Virol 56: 558–570.

    CAS  PubMed  Google Scholar 

  • Dobson AT, Margolis TP, Sedarati F, Stevens JG, Feldman LT (1990). A latent, nonpathogenic HSV-1-derived vector stably expresses beta-galactosidase in mouse neurons. Neuron 5: 353–360.

    Article  CAS  PubMed  Google Scholar 

  • Dumas T, McLaughlin J, Ho D, Meier T, Sapolsky R (1999). Delivery of herpes simplex virus amplicon-based vectors to the dentate gyrus does not alter hippocampal synaptic transmission in vivo. Gene Therapy 6: 1679–1684.

    Article  CAS  PubMed  Google Scholar 

  • Eidson KM, Hobbs WE, Manning BJ, Carlson P, DeLuca NA (2002). Expression of herpes simplex virus ICP0 inhibits the induction of interferon-stimulated genes by viral infection. J Virol 76: 2180–2191.

    Article  CAS  PubMed  Google Scholar 

  • Friedman HM, Wang L, Fishman NO, Lambris JD, Eisenberg RJ, Cohen GH, Lubinski J (1996). Immune evasion properties of herpes simplex virus type 1 glycoprotein gC. J Virol 70: 4253–4260.

    CAS  PubMed  Google Scholar 

  • Goodkin ML, Morton ER, Blaho JA (2004). Herpes simplex virus infection and apoptosis. Int Rev Immunol 23: 141–172.

    Article  CAS  PubMed  Google Scholar 

  • Goodkin ML, Ting AT, Blaho JA (2003). NF-kappaB is required for apoptosis prevention during herpes simplex virus type 1 infection. J Virol 77: 7261–7280.

    Article  CAS  PubMed  Google Scholar 

  • Guillemin GJ, Brew BJ (2004). Microglia macrophages perivascular macrophages and pericytes: a review of function and identification. J Leukoc Biol 75: 388–397.

    Article  CAS  PubMed  Google Scholar 

  • Higaki S, Gebhardt BM, Lukiw WJ, Thompson HW, Hill JM (2002). Effect of immunosuppression on gene expression in the HSV-1 latently infected mouse trigeminal ganglion. Investig Ophthalmol Vis Sci 43: 1862–1869.

    Google Scholar 

  • Hill JM, Lukiw WJ, Gebhardt BM, Higaki S, Loutsch JM, Myles ME, Thompson HW, Kwon BS, Bazan NG, Kaufman HE (2001). Gene expression analyzed by microarrays in HSV-1 latent mouse trigeminal ganglion following heat stress. Virus Genes 23: 273–280.

    Article  CAS  PubMed  Google Scholar 

  • Ho DY, Fink SL, Lawrence MS, Meier TJ, Saydam TC, Dash R, Sapolsky RM (1995). Herpes simplex virus vector system: analysis of its in vivo and in vitro cytopathic effects. J Neurosci Methods 57: 205–215.

    Article  CAS  PubMed  Google Scholar 

  • Johnson PA, Miyanohara A, Levine F, Cahill T, Friedmann T (1992). Cytotoxicity of a replication-defective mutant of herpes simplex virus type 1. J Virol 66: 2952–2965.

    CAS  PubMed  Google Scholar 

  • Johnson PA, Wang MJ, Friedmann T (1994). Improved cell survival by the reduction of immediate-early gene expression in replication-defective mutants of herpes simplex virus type 1 but not by mutation of the virion host shutoff function. J Virol 68: 6347–6362.

    CAS  PubMed  Google Scholar 

  • Khodarev NN, Advani SJ, Gupta N, Roizman B, Weichselbaum RR (1999). Accumulation of specific RNAs encoding transcriptional factors and stress response proteins against a background of severe depletion of cellular RNAs in cells infected with herpes simplex virus 1. Proc Natl Acad Sci U S A 96: 12062–12067.

    Article  CAS  PubMed  Google Scholar 

  • Kramer MF, Cook WJ, Roth FP, Zhu J, Holman H, Knipe DM, Coen DM (2003). Latent herpes simplex virus infection of sensory neurons alters neuronal gene expression. J Virol 77: 9533–9541.

    Article  CAS  PubMed  Google Scholar 

  • Kurt-Jones EA, Chan M, Zhou S, Wang J, Reed G, Bronson R, Arnold MM, Knipe DM, Finberg RW (2004). Herpes simplex virus 1 interaction with Toll-like receptor 2 contributes to lethal encephalitis. Proc Natl Acad Sci U S A 101: 1315–1320.

    Article  CAS  PubMed  Google Scholar 

  • Li C, Wong WH (2001). Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci U S A 98: 31–36.

    Article  CAS  PubMed  Google Scholar 

  • Lin R, Noyce RS, Collins SE, Everett RD, Mossman KL (2004). The herpes simplex virus ICP0 RING finger domain inhibits IRF3- and IRF7-mediated activation of interferon-stimulated genes. J Virol 78: 1675–1684.

    Article  CAS  PubMed  Google Scholar 

  • Lowenstein PR (2002). Immunology of viral-vector-mediated gene transfer into the brain: an evolutionary and developmental perspective. Trends Immunol 23: 23–30.

    Article  CAS  PubMed  Google Scholar 

  • Marques CP, Hu S, Sheng W, Cheeran MC, Cox D, Lokensgard JR (2004). Interleukin-10 attenuates production of HSV-induced inflammatory mediators by human microglia. Glia 47: 358–366.

    Article  PubMed  Google Scholar 

  • Marques CP, Hu S, Sheng W, Lokensgard JR (2006). Microglial cells initiate vigorous yet non-protective immune responses during HSV-1 brain infection. Virus Res 121: 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Morrison LA (2004). The Toll of herpes simplex virus infection. Trends Microbiol 12: 353–356.

    Article  CAS  PubMed  Google Scholar 

  • Mossman K (2005). Analysis of anti-interferon properties of the herpes simplex virus type IICP0 protein. Methods Mol Med 116: 195–205.

    CAS  PubMed  Google Scholar 

  • Olschowka JA, Bowers WJ, Hurley SD, Mastrangelo MA, Federoff HJ (2003). Helper-free HSV-1 amplicons elicit a markedly less robust innate immune response in the CNS. Mol Ther 7: 218–227.

    Article  CAS  PubMed  Google Scholar 

  • Pasieka TJ, Baas T, Carter VS, Proll SC, Katze MG, Leib DA (2006). Functional genomic analysis of herpes simplex virus type 1 counteraction of the host innate response. J Virol 80: 7600–7612.

    Article  CAS  PubMed  Google Scholar 

  • Paulus C, Sollars PJ, Pickard GE, Enquist LW (2006). Transcriptome signature of virulent and attenuated pseudorabies virus-infected rodent brain. J Virol 80: 1773–1786.

    Article  CAS  PubMed  Google Scholar 

  • Peden CS, Burger C, Muzyczka N, Mandel RJ (2004). Circulating anti-wild-type adeno-associated virus type 2 (AAV2) antibodies inhibit recombinant AAV2 (rAAV2)-mediated but not rAAV5-mediated, gene transfer in the brain. J Virol 78: 6344–6359.

    Article  CAS  PubMed  Google Scholar 

  • Peterson PK, Remington JS (2000). New concepts in the immunopathogenesis of CNS infections. Malden, MA: Blackwell Science.

    Google Scholar 

  • Singh J, Wagner EK (1995). Herpes simplex virus recombination vectors designed to allow insertion of modified promoters into transcriptionally “neutral” segments of the viral genome. Virus Genes 10: 127–136.

    Article  CAS  PubMed  Google Scholar 

  • Stingley SW, Ramirez JJ, Aguilar SA, Simmen K, Sandri-Goldin RM, Ghazal P, Wagner EK (2000). Global analysis of herpes simplex virus type 1 transcription using an oligonucleotide-based DNA microarray. J Virol 74: 9916–9927.

    Article  CAS  PubMed  Google Scholar 

  • Sun A, Devi-Rao GV, Rice MK, Gary LW, Bloom DC, Sandri-Goldin RM, Ghazal P, Wagner EK (2004). Immediate-early expression of the herpes simplex virus type 1 ICP27 transcript is not critical for efficient replication in vitro or in vivo. J Virol 78: 10470–10478.

    Article  CAS  PubMed  Google Scholar 

  • Taddeo B, Esclatine A, Roizman B (2002). The patterns of accumulation of cellular RNAs in cells infected with a wild-type and a mutant herpes simplex virus 1 lacking the virion host shutoff gene. Proc Natl Acad Sci U S A 99: 17031–17036.

    Article  CAS  PubMed  Google Scholar 

  • Taddeo B, Luo TR, Zhang W, Roizman B (2003). Activation of NF-kappaB in cells productively infected with HSV-1 depends on activated protein kinase R and plays no apparent role in blocking apoptosis. Proc Natl Acad Sci U S A 100: 12408–12413.

    Article  CAS  PubMed  Google Scholar 

  • Taddeo B, Zhang W, Lakeman F, Roizman B (2004). Cells lacking NF-kappaB or in which NF-kappaB is not activated vary with respect to ability to sustain herpes simplex virus 1 replication and are not susceptible to apoptosis induced by a replication-incompetent mutant virus. J Virol 78: 11615–11621.

    Article  CAS  PubMed  Google Scholar 

  • Tsavachidou D, Podrzucki W, Seykora J, Berger SL (2001). Gene array analysis reveals changes in peripheral nervous system gene expression following stimuli that result in reactivation of latent herpes simplex virus type 1: induction of transcription factor Bcl-3. J Virol 75: 9909–9917.

    Article  CAS  PubMed  Google Scholar 

  • Wagner EK (2006). The development of microarrays for analyzing hsv gene expression. In Alpha herpesviruses: molecular and cellular biology. Sandri-Goldin RM (ed). Wymondham, UK: Caister Academic, pp 121–134.

    Google Scholar 

  • Wagner EK, Bloom DC (1997). Experimental investigation of herpes simplex virus latency. Clin Microbiol Rev 10: 419–443.

    CAS  PubMed  Google Scholar 

  • Wagner EK, Ramirez JJ, Stingley SW, Aguilar SA, Buehler L, Devi-Rao GB, Ghazal P (2002). Practical approaches to long oligonucleotide-based DNA microarray: lessons from herpesviruses. Prog Nucleic Acid Res Mol Biol 71: 445–491.

    Article  CAS  PubMed  Google Scholar 

  • Wood MJ, Byrnes AP, Kaplitt MG, Pfaff DW, Rabkin SD, Charlton HM (1994). Specific patterns of defective HSV-1 gene transfer in the adult central nervous system: implications for gene targeting. Exp Neurol 130: 127–140.

    Article  CAS  PubMed  Google Scholar 

  • Yang WC, Devi-Rao GV, Ghazal P, Wagner EK, Triezenberg SJ (2002). General and specific alterations in programming of global viral gene expression during infection by VP16 activation-deficient mutants of herpes simplex virus type 1. J Virol 76: 12758–12774.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Bloom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeier, Z., Aguilar, J.S., Lopez, C.M. et al. A limited innate immune response is induced by a replication-defective herpes simplex virus vector following delivery to the murine central nervous system. Journal of NeuroVirology 15, 411–424 (2009). https://doi.org/10.3109/13550280903473452

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.3109/13550280903473452

Keywords

Navigation