Skip to main content
Log in

Identification of herpes simplex virus type 1 proteins encoded within the first 1.5 kb of the latency-associated transcript

  • Short Communication
  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

Expression of the first 1.5 kb of the latency-associated transcript (LAT) that is encoded by herpes simplex virus type 1 (HSV-1) is sufficient for wild-type (wt) levels of reactivation from latency in small animal models. Peptide-specific immunoglobulin G (IgG) was generated against open reading frames (ORFs) that are located within the first 1.5 kb of LAT coding sequences. Cells stably transfected with LAT or trigeminal ganglionic neurons of mice infected with a LAT expressing virus appeared to express the L2 or L8 ORF. Only L2 ORF expression was readily detected in trigeminal ganglionic neurons of latently infected mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Ahmed M, Lock M, Miller CG, Fraser NW (2002). Regions of the herpes simplex virus type 1 latency-associated transcript that protect cells from apoptosis in vitro and protect neuronal cells in vivo. J Virol 76: 717–729.

    Article  CAS  PubMed  Google Scholar 

  • Batchelor AH, O’Hare P (1990). Regulation and cell-type-specific activity of a promoter located upstream of the latency-associated transcript of herpes simplex virus type 1. J Virol 64: 3269–3279.

    CAS  PubMed  Google Scholar 

  • Branco FJ, Fraser NW (2005). Herpes simplex virus type 1 latency-associated transcript expression protects trigeminal ganglion neurons from apoptosis. J Virol 79: 9019–9025.

    Article  CAS  PubMed  Google Scholar 

  • Carpenter D, Henderson G, Hsiang C, Osorio N, BenMohamed L, Jones C, Wechsler SL (2008). Introducing point mutations into the ATGs of the putative open reading frame of the HSV-1 gene encoding the latency associated transcript (LAT) reduces its anti-apoptotis activity. Microb Pathogen 44: 98–102.

    Article  CAS  Google Scholar 

  • Carpenter D, Hsiang C, Jin L, Osorio N, BenMohamed L, Jones C, Wechsler SL (2007). Stable cell lines expressing high levels of the herpes simplex virus type 1 LAT are refractory to caspase 3 activation and DNA laddering following cold shock induced apoptosis. Virology 369: 12–18.

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Schmidt MC, Goins WF, Glorioso JC (1995). Two herpes simplex virus type 1 latency-active promoters differ in their contributions to latency-associated transcript expression during lytic and latent infections. J Virol 69: 7899–7908.

    CAS  PubMed  Google Scholar 

  • Croen KD, Ostrove JM, Dragovic LJ, Smialek JE, Straus SE (1987). Latent herpes simplex virus in human trigeminal ganglia. Detection of an immediate early gene “anti-sense” transcript by in situ hybridization. N Engl J Med 317: 1427–1432.

    Article  CAS  PubMed  Google Scholar 

  • Deatly AM, Spivack JG, Lavi E, O’Boyle DR, Fraser NW (1988). Latent herpes simplex virus type 1 transcripts in peripheral and central nervous system tissues of mice map to similar regions of the viral genome. J Virol 62: 749–756.

    CAS  PubMed  Google Scholar 

  • Deatly AM, Spivack JG, Lavi E, Fraser NW (1987). RNA from an immediate early region of the type 1 herpes simplex virus genome is present in the trigeminal ganglia of latently infected mice. Proc Natl Acad Sci U S A 84: 3204–3208.

    Article  CAS  PubMed  Google Scholar 

  • Doerig C, Pizer LI, Wilcox CL (1991). An antigen encoded by the latency-associated transcript in neuronal cell cultures latently infected with herpes simplex virus type 1. J Virol 65: 2724–2727.

    CAS  PubMed  Google Scholar 

  • Drolet BS, Perng G-C, Cohen J, Slanina SM, Yukht A, Nesburn AB, Wechsler SL (1998). The region of the herpes simplex virus type 1 LAT gene involved in spontaneous reactivation does not encode a functional protein. Virology 242: 221–232.

    Article  CAS  PubMed  Google Scholar 

  • Goins WF, Sternberg LR, Croen KD, Krause PR, Hendricks RL, Fink DJ, Straus SE, Levine M, Glorioso JC (1994). A novel latency-active promoter is contained within the herpes simplex virus type 1 UL flanking repeats. J Virol 68: 2239–2252.

    CAS  PubMed  Google Scholar 

  • Henderson G, Peng W, Jin L, Perng G-C, Nesburn AB, Wechsler SL, Jones C (2002). Regulation of caspase 8- and caspase 9-induced apoptosis by the herpes simplex virus latency-associated transcript. J NeuroVirol 8: 103–111.

    Article  CAS  PubMed  Google Scholar 

  • Inman M, Perng G-C, Henderson G, Ghiasi H, Nesburn AB, Wechsler SL, Jones C (2001). Region of herpes simplex virus type 1 latency-associated transcript sufficient for wild-type spontaneous reactivation promotes cell survival in tissue culture. J Virol 75: 3636–3646.

    Article  CAS  PubMed  Google Scholar 

  • Jin L, Carpenter D, Moerdyk-Schauwecker M, Vanarsdall AL, Osorio N, Hsiang C, Jones C, Wechsler SL (2008). Cellular FLIP can substitute for the herpes simplex virus type 1 LAT gene to support a wild type virus reactivation phenotype in mice. J NeuroVirol 14: 389–400.

    Article  CAS  PubMed  Google Scholar 

  • Jin L, Peng W, Perng G-C, Nesburn AB, Jones C, Wechsler SL (2003). Identification of herpes simplex virus type 1 (HSV-1) latency associated transcript (LAT) sequences that both inhibit apoptosis and enhance the spontaneous reactivation phenotype. J Virol 77: 6556–6561.

    Article  CAS  PubMed  Google Scholar 

  • Jin L, Perng G-C, Brick DJ, Naito J, Nesburn AB, Jones C, Wechsler SL (2004). Methods for detecting the HSV-1 LAT anti-apoptosis activity in virus infected tissue culture cells. J Virol Meth 118: 9–13.

    Article  CAS  Google Scholar 

  • Jin L, Perng G-C, Nesburn AB, Jones C, Wechsler SL (2005). The baculovirus inhibitor of apoptosis gene (cpIAP) can restore reactivation of latency to a herpes simplex virus type 1 that does not express the latency associated transcript (LAT). J Virol: 12286–12295.

  • Jones C (1998). Alphaherpesvirus latency: its role in disease and survival of the virus in nature. Adv Virus Res 51: 81–133.

    Article  CAS  PubMed  Google Scholar 

  • Jones C (2003). Herpes simplex virus type 1 and bovine herpesvirus 1 latency. Clin Micro Rev 16: 79–95.

    Article  CAS  PubMed  Google Scholar 

  • Jones C, Inman M, Peng W, Henderson G, Doster A, Perng G-C, Kaenjak Angeletti A (2005). The herpes simplex virus type 1 (HSV-1) locus that encodes the latency-associated transcript (LAT) enhances the frequency of encephalitis in male Balb/C mice. J Virol 79: 14465–14469.

    Article  CAS  PubMed  Google Scholar 

  • Kang W, Mukerjee R, Fraser NF (2003). Establishement and maintenance of HSV latent infection is mediated through correct splicing of the LAT primary transcript. Virology 312: 233–244.

    Article  CAS  PubMed  Google Scholar 

  • Krause PR, Croen KD, Straus SE, Ostrove JM (1988). Detection and preliminary characterization of herpes simplex virus type 1 transcripts in latently infected human trigeminal ganglia. J Virol 62: 4819–4823.

    CAS  PubMed  Google Scholar 

  • Lagunoff M, Roizman B (1994). Expression of a herpes simplex virus 1 open reading frame antisense to the gamma(1)34.5 gene and transcribed by an RNA 3′ coterminal with the unspliced latency-associated transcript. J Virol 68: 6021–6028.

    CAS  PubMed  Google Scholar 

  • Lock M, Miller C, Fraser NW (2001). Analysis of protein expression from within the region encoding the 2.0-kilobase latency-associated transcript of herpes simplex virus type 1. J Virol 75: 3413–3426.

    Article  CAS  PubMed  Google Scholar 

  • Lokensgard JR, Berthomme H, Feldman LT (1997). The latency-associated promoter of herpes simplex virus type 1 requires a region downstream of the transcription start site for long-term expression during latency. J Virol 71: 6714–6719.

    CAS  PubMed  Google Scholar 

  • Mador N, Panet A, Latchman D, Steiner I (1995). Expression and splicing of the latency-associated transcripts of herpes simplex virus type 1 in neuronal and non-neuronal cell lines. J Biochem (Tokyo) 117: 1288–1297.

    CAS  Google Scholar 

  • Mitchell WJ, Lirette RP, Fraser NW (1990). Mapping of low abundance latency-associated RNA in the trigeminal ganglia of mice latently infected with herpes simplex virus type 1. J Gen Virol 71: 125–132.

    Article  CAS  PubMed  Google Scholar 

  • Mott K, Osorio N, Jin L, Brick D, Naito J, Cooper J, Henderson G, Inman M, Jones C, Wechsler SL, Perng G-C (2003). The bovine herpesvirus 1 LR ORF2 is crucial for this gene’s ability to restore the high reactivation phenotype to a Herpes simplex virus-1 LAT null mutant. J Gen Virol 84: 2975–2985.

    Article  CAS  PubMed  Google Scholar 

  • Nahmias AJ, Roizman B (1973). Infection with herpes-simplex viruses 1 and 2. 3. N Engl J Med 289: 781–789.

    Article  CAS  PubMed  Google Scholar 

  • Peng W, Henderson G, Perng G-C, Nesburn AB, Wechsler SL, Jones C (2003). The gene that encodes the herpes simplex virus type 1 latency-associated transcript influences the accumulation of transcripts (Bcl-xL and Bcl-xS) that encode apoptotic regulatory proteins. J Virol 77: 10714–10718.

    Article  CAS  PubMed  Google Scholar 

  • Peng W, Inman M, Henderson G, Wechsler SL, Ben Mohamed L, Perng G-C, Jones C (2005). The locus encompassing the latency-associated transcript (LAT) of herpes simplex virus type 1 interferes with and delays interferon expression in productively infected neuroblastoma cells and trigeminal ganglia of acutely infected mice. J Virol 79: 6162–6171.

    Article  CAS  PubMed  Google Scholar 

  • Perez S, Lovato L, Zhou J, Doster A, Jones C (2006). Comparison of inflammatory infiltrates in trigeminal ganglia of cattle infected with wild type BHV-1 versus a virus strain containing a mutaition in the LR (latency-related) gene. J NeuroVirol 12: 392–397.

    Article  CAS  PubMed  Google Scholar 

  • Perez S, Meyer F, Henderson G, Jiang Y, Sherman S, Doster A, Inman M, Jones C (2007). A protein encoded by the bovine herpesvirus 1 ORF E gene induces neurite-like morphological changes in mouse neuroblastoma cells and is expressed in trigeminal ganglionic neurons. J NeuroVirol 13: 139–149.

    Article  CAS  PubMed  Google Scholar 

  • Perng G-C, Chokephaibulkit K, Thompson RL, Sawtell NM, Slanina SM, Ghiasi H, Nesburn AB, Wechsler SL (1996b). The region of the herpes simplex virus type 1 LAT gene that is colinear with the ICP34.5 gene is not involved in spontaneous reactivation. J Virol 70: 282–291.

    CAS  PubMed  Google Scholar 

  • Perng G-C, Dunkel EC, Geary PA, Slanina SM, Ghiasi H, Kaiwar R, Nesburn AB, Wechsler SL (1994a). The latency-associated transcript gene of herpes simplex virus type 1 (HSV-1) is required for efficient in vivo spontaneous reactivation of HSV-1 from latency. J Virol 68: 8045–8055.

    CAS  PubMed  Google Scholar 

  • Perng G-C, Esmail D, Slanina S, Yukht A, Ghiasi H, Osorio N, Mott KR, Maguen B, Jin L, Nesburn AB, Wechsler SL (2001). Three herpes simplex virus type 1 latency-associated transcipt mutants with distinct and assymetric effects on virulence in mice compared with rabbits. J Virol 75: 9018–9028.

    Article  CAS  PubMed  Google Scholar 

  • Perng G-C, Ghiasi H, Slanina SM, Nesburn AB, Wechsler SL (1996a). The spontaneous reactivation function of the herpes simplex virus type 1 LAT gene resides completely within the first 1.5 kilobases of the 8.3-kilobase primary transcript. J Virol 70: 976–984.

    CAS  PubMed  Google Scholar 

  • Perng G-C, Jones C, Ciacci-Zanella J, Stone M, Henderson G, Yukht A, Slanina SM, Hoffman FM, Ghiasi H, Nesburn AB, Wechsler SL (2000). Virus-induced neuronal apoptosis blocked by the herpes simplex virus latency-associated transcript (LAT). Science 287: 1500–1503.

    Article  CAS  PubMed  Google Scholar 

  • Perng G-C, Maguen B, Jin L, Mott KR, Osorio N, Slanina SM, Yukht A, Ghiasi H, Nesburn AB, Inman M, Henderson G, Jones C, Wechsler SL (2002). A gene capable of blocking apoptosis can substitute for the herpes simplex virus type 1 latency-associated transcript gene and restore wild-type reactivation levels. J Virol 76: 1224–1235.

    Article  CAS  PubMed  Google Scholar 

  • Perng G-C, Slanina SM, Ghiasi H, Nesburn AB, Wechsler SL (1996c). A 371-nucleotide region between the herpes simplex virus type 1 (HSV-1) LAT promoter and the 2-kilobase LAT is not essential for efficient spontaneous reactivation of latent HSV-1. J Virol 70: 2014–2018.

    CAS  PubMed  Google Scholar 

  • Perng G-C, Slanina SM, Yukht A, Drolet BS, Keleher W, Ghiasi H, Nesburn AB, Wechsler SL (1999). A herpes simplex virus type 1 latency-associated transcript mutant with increased virulence and reduced spontaneous reactivation. J Virol 73: 920–929.

    CAS  PubMed  Google Scholar 

  • Randall G, Lagunoff M, Roizman B (1997). The product of ORF O located within the domain of herpes simplex virus 1 genome transcribed during latent infection binds to and inhibits in vitro binding of infected cell protein 4 to its cognate DNA site. Proc Natl Acad Sci U S A 94: 10379–10384.

    Article  CAS  PubMed  Google Scholar 

  • Rock DL, Nesburn AB, Ghiasi H, Ong J, Lewis TL, Lokensgard JR, Wechsler SL (1987). Detection of latency-related viral RNAs in trigeminal ganglia of rabbits latently infected with herpes simplex virus type 1. J Virol 61: 3820–3826.

    CAS  PubMed  Google Scholar 

  • Sawtell NM (1997). Comprehensive quantification of herpes simplex virus latency at the single-cell level. J Virol 71: 5423–5431.

    CAS  PubMed  Google Scholar 

  • Stevens JG, Wagner EK, Devi-Rao GB, Cook ML, Feldman LT (1987). RNA complementary to a herpesvirus alpha gene mRNA is prominent in latently infected neurons. Science 235: 1056–1059.

    Article  CAS  PubMed  Google Scholar 

  • Thomas SK, Gough G, Latchman DS, Coffin RS (1999). Herpes simplex virus latency-associated transcript encodes a protein which greatly enhances virus growth, can compensate for deficiencies in immediate-early gene expression, is likely to function during reactivation from virus latency. J Virol 73: 6618–6625.

    CAS  PubMed  Google Scholar 

  • Thomas SK, Lilley CE, Latchman DS, Coffin RS (2002). A Protein Encoded by the Herpes Simplex Virus (HSV) Type 1 2-Kilobase Latency-associated transcript is phosphorylated, localized to the nucleus, and overcomes the repression of expression from exogenous promoters when inserted into the quiescent HSV genome. J Virol 76: 4056–4067.

    Article  CAS  PubMed  Google Scholar 

  • Wagner EK, Bloom DC (1997). Experimental investigation of herpes simplex virus latency. Clin Microbiol Rev 10: 419–443.

    CAS  PubMed  Google Scholar 

  • Wagner EK, Devi-Rao G, Feldman LT, Dobson AT, Zhang YF, Flanagan WM, Stevens JG (1988a). Physical characterization of the herpes simplex virus latency-associated transcript in neurons. J Virol 62: 1194–1202.

    CAS  PubMed  Google Scholar 

  • Wagner EK, Flanagan WM, Devi-Rao G, Zhang YF, Hill JM, Anderson KP, Stevens JG (1988b). The herpes simplex virus latency-associated transcript is spliced during the latent phase of infection. J Virol 62: 4577–4585.

    CAS  PubMed  Google Scholar 

  • Whitley R (1997). Herpes simplex virus. Philadelphia, New York: Lippincott-Raven Publishers.

    Google Scholar 

  • Winkler MTC, Doster A, Jones C (2000a). Persistence and reactivation of bovine herpesvirus 1 in the tonsil of latently infected calves. J Virol 74: 5337–5346.

    Article  CAS  PubMed  Google Scholar 

  • Winkler MT, Doster A, Sur JH, Jones C (2002). Analysis of bovine trigeminal ganglia following infection with bovine herpesvirus 1. Vet Microbiol 86: 139–155.

    Article  CAS  PubMed  Google Scholar 

  • Winkler MT, Schang LS, Doster A, Holt T, Jones C (2000b). Analysis of cyclins in trigeminal ganglia of calves infected with bovine herpesvirus-1. J Gen Virol 81: 2993–2998.

    CAS  PubMed  Google Scholar 

  • Zwaagstra JC, Ghiasi H, Slanina SM, Nesburn AB, Wheatley SC, Lillycrop K, Wood J, Latchman DS, Patel K, Wechsler SL (1990). Activity of herpes simplex virus type 1 latency-associated transcript (LAT) promoter in neuron-derived cells: evidence for neuron specificity and for a large LAT transcript. J Virol 64: 5019–5028.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clinton Jones.

Additional information

Dr. C. Jones’ laboratory is supported by a PHS grant (R21AI069176), two USDA grants (2009- and 2006-01627), and a PHS grant 1P20RR15635 to the Nebraska Center for Virology. Dr. Wechsler’s laboratory is supported by PHS grant EY13191, The Discovery Eye Foundation, The Henry L. Guenther Foundation, and Research to Prevent Blindness. Dr. Wechsler is a RPB Senior Scientific Investigator.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henderson, G., Jaber, T., Carpenter, D. et al. Identification of herpes simplex virus type 1 proteins encoded within the first 1.5 kb of the latency-associated transcript. Journal of NeuroVirology 15, 439–448 (2009). https://doi.org/10.3109/13550280903296353

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.3109/13550280903296353

Keywords

Navigation