Skip to main content

Advertisement

Log in

Transgene expression in the mouse cerebellar Purkinje cells with a minimal level of integration using long terminal repeat—modified lentiviral vectors

  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

Lentiviral vectors (LVs), which preferentially target nondividing cells, such as neurons, are promising tools for gene therapy. However, these vectors are still unsuitable as they result in insertional mutagenesis. It is therefore essential to prevent insertional mutagenesis if these vectors are to be adopted for safe next-generation clinical applications. In order to establish safe genetic therapy with LVs, we focused on the integrase recognition sequence (att) in the long terminal repeat (LTR), which is localized at the edge of the preintegrated viral DNA. We generated LTR-modified LVs (LMLVs), by altering the conserved sequences located just before the cleavage site; this alteration prevented the integration of viral DNA into the host genome. In this study, the LMLVs significantly decreased the LV-mediated transgene expression in HeLa cells compared to the control, i.e., wild-type LTR LVs; this supposedly occurred because integration was prevented. In addition, LMLVs exhibited gene expression in vivo when they were injected into the mouse cerebellum. Moreover, quantitative Alu element—mediated polymerase chain reaction (Alu-PCR), which detects integrated viral DNA, revealed that rate of LMLV-suppressed integration was approximately 1/500-fold compared to that in the case of the wild-type LTR LV. These data suggest that LMLVs efficiently prevent integration as well as exhibit LV-mediated gene expression in mouse cerebellar Purkinje cells in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ailles LE, Naldini L (2002). HIV-1-derived lentiviral vectors. Curr Top Microbiol Immunol 261: 31–52.

    CAS  PubMed  Google Scholar 

  • Apolonia L, Waddington SN, Fernandes C, Ward NJ, Bouma G, Blundell MP, Thrasher AJ, Collins MK, Philpott NJ (2007). Stable gene transfer to muscle using non-integrating lentiviral vectors. Mol Ther 15: 1947–1954.

    Article  CAS  PubMed  Google Scholar 

  • Bokhoven M, Stephen SL, Knight S, Gevers EF, Robinson IC, Takeuchi Y, Collins MK (2009). Insertional gene activation by lentiviral and gammaretroviral vectors. J Virol 83: 283–294.

    Article  CAS  PubMed  Google Scholar 

  • Brussel A, Delelis O, Sonigo P (2005). Alu-LTR real-time nested PCR assay for quantifying integrated HIV-1 DNA. Methods Mol Biol 304: 139–154.

    CAS  PubMed  Google Scholar 

  • Follenzi A, Battaglia M, Lombardo A, Annoni A, Roncarolo MG, Naldini L (2004). Targeting lentiviral vector expression to hepatocytes limits transgene-specific immune response and establishes long-term expression of human antihemophilic factor IX in mice. Blood 103: 3700–3709.

    Article  CAS  PubMed  Google Scholar 

  • Geraerts M, Willems S, Baekelandt V, Debyser Z, Gijsbers R (2006). Comparison of lentiviral vector titration methods. BMC Biotechnol 6: 34.

    Article  PubMed  Google Scholar 

  • Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, Lim A, Osborne CS, Pawliuk R, Morillon E, Sorensen R, Forster A, Fraser P, Cohen JI, de Saint Basile G, Alexander I, Wintergerst U, Frebourg T, Aurias A, Stoppa-Lyonnet D, Romana S, Radford-Weiss I, Gross F, Valensi F, Delabesse E, Macintyre E, Sigaux F, Soulier J, Leiva LE, Wissler M, Prinz C, Rabbitts TH, Le Deist F, Fischer A, Cavazzana-Calvo M (2003). LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302: 415–419.

    Article  CAS  PubMed  Google Scholar 

  • Hanawa H, Persons DA, Nienhuis AW (2005). Mobilization and mechanism of transcription of integrated self-inactivating lentiviral vectors. J Virol 79: 8410–8421.

    Article  CAS  PubMed  Google Scholar 

  • Hawley RG, Lieu FH, Fong AZ, Hawley TS (1994). Versatile retroviral vectors for potential use in gene therapy. Gene Ther 1: 136–138.

    CAS  PubMed  Google Scholar 

  • Iwakuma T, Cui Y, Chang LJ (1999). Self-inactivating lentiviral vectors with U3 and U5 modifications. Virology 261: 120–132.

    Article  CAS  PubMed  Google Scholar 

  • Karwacz K, Mukherjee S, Apolonia L, Blundell MP, Bouma G, Escors D, Collins MK, Thrasher AJ (2009). Nonintegrating lentivector vaccines stimulate prolonged T-cell and antibody responses and are effective in tumor therapy. J Virol 83: 3094–3103.

    Article  CAS  PubMed  Google Scholar 

  • Kim VN, Mitrophanous K, Kingsman SM, Kingsman AJ (1998). Minimal requirement for a lentivirus vector based on human immunodeficiency virus type 1. J Virol 72: 811–816.

    CAS  PubMed  Google Scholar 

  • Leavitt AD, Robles G, Alesandro N, Varmus HE (1996). Human immunodeficiency virus type 1 integrase mutants retain in vitro integrase activity yet fail to integrate viral DNA efficiently during infection. J Virol 70: 721–728.

    CAS  PubMed  Google Scholar 

  • Li L, Olvera JM, Yoder KE, Mitchell RS, Butler SL, Lieber M, Martin SL, Bushman FD (2001). Role of the non-homologous DNA end joining pathway in the early steps of retroviral infection. EMBO J 20: 3272–3281.

    Article  CAS  PubMed  Google Scholar 

  • Lu R, Limon A, Ghory HZ, Engelman A (2005). Genetic analyses of DNA-binding mutants in the catalytic core domain of human immunodeficiency virus type 1 integrase. J Virol 79: 2493–2505.

    Article  CAS  PubMed  Google Scholar 

  • Masuda T, Kuroda MJ, Harada S (1998). Specific and independent recognition of U3 and U5 att sites by human immunodeficiency virus type 1 integrase in vivo. J Virol 72: 8396–8402.

    CAS  PubMed  Google Scholar 

  • Matsuda S, Mikawa S, Hirai H (1999). Phosphorylation of serine-880 in GluR2 by protein kinase C prevents its C terminus from binding with glutamate receptor-interacting protein. J Neurochem 73: 1765–1768.

    Article  CAS  PubMed  Google Scholar 

  • Miyoshi H, Blomer U, Takahashi M, Gage FH, Verma IM (1998). Development of a self-inactivating lentivirus vector. J Virol 72: 8150–8157.

    CAS  PubMed  Google Scholar 

  • Naldini L, Blomer U, Gage FH, Trono D, Verma IM (1996). Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci USA 93: 11382–11388.

    Article  CAS  PubMed  Google Scholar 

  • Nightingale SJ, Hollis RP, Pepper KA, Petersen D, Yu XJ, Yang C, Bahner I, Kohn DB (2006). Transient gene expression by nonintegrating lentiviral vectors. Mol Ther 13: 1121–1132.

    Article  CAS  PubMed  Google Scholar 

  • Niwa H, Yamamura K, Miyazaki J (1991). Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108: 193–199.

    Article  CAS  PubMed  Google Scholar 

  • Philippe S, Sarkis C, Barkats M, Mammeri H, Ladroue C, Petit C, Mallet J, Serguera C (2006). Lentiviral vectors with a defective integrase allow efficient and sustained transgene expression in vitro and in vivo. Proc Natl Acad Sci USA 103: 17684–17689.

    Article  CAS  PubMed  Google Scholar 

  • Rahim AA, Wong AM, Howe SJ, Buckley SM, Acosta-Saltos AD, Elston KE, Ward NJ, Philpott NJ, Cooper JD, Anderson PN, Waddington SN, Thrasher AJ, Raivich G (2009). Efficient gene delivery to the adult and fetal CNS using pseudotyped non-integrating lentiviral vectors. Gene Ther 16: 509–520.

    Article  CAS  PubMed  Google Scholar 

  • Reiser J, Harmison G, Kluepfel-Stahl S, Brady RO, Karlsson S, Schubert M (1996). Transduction of nondividing cells using pseudotyped defective high-titer HIV type 1 particles. Proc Natl Acad Sci U S A 93: 15266–15271.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt M, Schwarzwaelder K, Bartholomae C, Zaoui K, Ball C, Pilz I, Braun S, Glimm H, von Kalle C (2007). High-resolution insertion-site analysis by linear amplification-mediated PCR (LAM-PCR). Nat Methods 4: 1051–1057.

    Article  CAS  PubMed  Google Scholar 

  • Schnell T, Foley P, Wirth M, Munch J, Uberla K (2000). Development of a self-inactivating, minimal lentivirus vector based on simian immunodeficiency virus. Hum Gene Ther 11: 439–447.

    Article  CAS  PubMed  Google Scholar 

  • Sherman PA, Dickson ML, Fyfe JA (1992). Human immunodeficiency virus type 1 integration protein: DNA sequence requirements for cleaving and joining reactions. J Virol 66: 3593–3601.

    CAS  PubMed  Google Scholar 

  • Takayama K, Torashima T, Horiuchi H, Hirai H (2008). Purkinje-cell-preferential transduction by lentiviral vectors with the murine stem cell virus promoter. Neurosci Lett 443: 7–11.

    Article  CAS  PubMed  Google Scholar 

  • Torashima T, Okoyama S, Nishizaki T, Hirai H (2006a). In vivo transduction of murine cerebellar Purkinje cells by HIV-derived lentiviral vectors. Brain Res 1082: 11–22.

    Article  CAS  PubMed  Google Scholar 

  • Torashima T, Yamada N, Itoh M, Yamamoto A, Hirai H (2006b). Exposure of lentiviral vectors to subneutral pH shifts the tropism from Purkinje cell to Bergmann glia. Eur J Neurosci 24: 371–380.

    Article  PubMed  Google Scholar 

  • Verma IM, Somia N (1997). Gene therapy — promises, problems and prospects. Nature 389: 239–242.

    Article  CAS  PubMed  Google Scholar 

  • Wong LF, Azzouz M, Walmsley LE, Askham Z, Wilkes FJ, Mitrophanous KA, Kingsman SM, Mazarakis ND (2004). Transduction patterns of pseudotyped lentiviral vectors in the nervous system. Mol Ther 9: 101–111.

    Article  CAS  PubMed  Google Scholar 

  • Woods NB, Bottero V, Schmidt M, von Kalle C, Verma IM (2006). Gene therapy: therapeutic gene causing lymphoma. Nature 440: 1123.

    Article  CAS  PubMed  Google Scholar 

  • Yanez-Munoz RJ, Balaggan KS, MacNeil A, Howe SJ, Schmidt M, Smith AJ, Buch P, MacLaren RE, Anderson PN, Barker SE, Duran Y, Bartholomae C, von Kalle C, Heckenlively JR, Kinnon C, Ali RR, Thrasher AJ (2006). Effective gene therapy with non-integrating lentiviral vectors. Nat Med 12: 348–353.

    Article  CAS  PubMed  Google Scholar 

  • Zufferey R, Dull T, Mandel RJ, Bukovsky A, Quiroz D, Naldini L, Trono D (1998). Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 72: 9873–9880.

    CAS  PubMed  Google Scholar 

  • Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D (1997). Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 15: 871–875.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Torashima.

Additional information

This work was supported by a Grant-in-Aid for Scientific Research from Takeda Science Foundation (to T. T.) and Japan Intractable Diseases Research Foundation (to T. T.). The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takayama, K., Torashima, T. Transgene expression in the mouse cerebellar Purkinje cells with a minimal level of integration using long terminal repeat—modified lentiviral vectors. Journal of NeuroVirology 15, 371–379 (2009). https://doi.org/10.3109/13550280903214091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.3109/13550280903214091

Keywords

Navigation