Advertisement

Journal of NeuroVirology

, Volume 16, Issue 2, pp 101–114 | Cite as

Does highly active antiretroviral therapy improve neurocognitive function? A systematic review

  • John A. JoskaEmail author
  • Hetta Gouse
  • Robert H. Paul
  • Dan J. Stein
  • Alan J. Flisher
Review

Abstract

Highly active antiretroviral therapy (HAART) reduces the incidence of human immunodeficiency virus (HIV) dementia (HAD), whereas the overall prevalence appears to have increased. Recent changes to diagnostic nosology have emphasized the presence of neurocognitive deficits. Uniform methods of ascertaining neuropsychological impairment and excluding confounding causes are critical to between-study comparison. We conducted a systematic review on all studies that use single-cohort prospective treatment effect design that reported on the neurocognitive or neuropsychological profile of individuals commencing HAART. Fifteen 15 relevant studies were included. A large number of studies using observational or cross-sectional designs were excluded, as these do not allow for a within-subject description of pre- and post-HAART predictive factors. Eleven studies reported a significant improvement in neurocognitive status or neuropsychological profile over an average study period of 6 months. Variable or nonreporting of HAART regimens in these studies did not allow for an analysis of individual agent or regimen effectiveness. The results show that although HAART does improve cognition, it does not appear to fully eradicate impairments. The methods used in this research differ widely and therefore comparison across studies is difficult. Studies examining the long-term effects of HAART on HIV-associated neurocognitive disorders (HANDs) using uniform methods of data collection are needed, together with clear reporting of HAART regimens.

Keywords

HIV/AIDS HIV dementia neuropsychology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M, Clifford DB, Cinque P, Epstein LG, Goodkin K, Gisslen M, Grant I, Heaton RK, Joseph J, Marder K, Marra CM, McArthur JC, Nunn M, Price RW, Pulliam L, Robertson K.R, Sacktor N, Valcour V, Wojna VE (2007a).Updatedresearchnosologyfor HIV-associated neurocognitive disorders. Neurology 69: 1789–1799.CrossRefPubMedGoogle Scholar
  2. Brew BJ (2004). Evidence for a change in AIDS dementia complex in the era of highly active anti-retroviral therapy and the possibility of new forms of AIDS dementia complex. AIDS 18(Suppl 1): S75-S78.PubMedGoogle Scholar
  3. Carvalhal AS, Rourke SB, Belmonte-Abreu P, Correa J, Goldani LZ (2006). Evaluation of neuropsychological performance of HIV-infected patients with minor motor cognitive dysfunction treated with highly active antiretroviral therapy. Infection 34: 357–360.CrossRefPubMedGoogle Scholar
  4. Chang L (1999). Highly active anti-retroviral therapy reverses brain metabolite abnormalities in mild HIV dementia. Neurology 53: 782–789.PubMedGoogle Scholar
  5. Cherner M, Cysique L, Heaton RK, Marcotte TD, Ellis RJ, Masliah E, Grant I (2007). Neuropathologic confirmation of definitional criteria for human immunodeficiency virus-associated neurocognitive disorders. J NeuroVirol 13: 23–28.CrossRefPubMedGoogle Scholar
  6. Cherner M, Masliah E, Ellis RJ, Marcotte TD, Moore DJ, Grant I, Heaton RK (2002). Neurocognitive dysfunction predicts postmortem findings of HIV encephalitis. Neurology 59: 1563–1567.PubMedGoogle Scholar
  7. Cherner M, Suarez P, Posada C, Fortuny LA, Marcotte T, Grant I, Heaton R (2008). Equivalency of Spanish language versions of the trail making test part B including or excluding “CH”. Clin Neuropsychol 22: 662–665.CrossRefPubMedGoogle Scholar
  8. Cunningham PH, Smith DG, Satchell C, Cooper DA, Brew B (2000). Evidence for independent development of resistance to HIV-1 reverse transcriptase inhibitors in the cerebrospinal fluid. AIDS 14: 1949–1954.CrossRefPubMedGoogle Scholar
  9. Cysique LA, Brew BJ (2009). Neuropsychological functioning and anti-retroviral treatment in HIV/AIDS: a review. Neuropsychol Rev 19: 169–185.CrossRefPubMedGoogle Scholar
  10. Cysique LA, Jin H, Franklin DR Jr, Morgan EE, Shi C, Yu X, Wu Z, Taylor MJ, Marcotte TD, Letendre S, Ake C, Grant I, Heaton RK (2007). Neurobehavioral effects of HIV-1 infection in China and the United States: a pilot study. J Int Neuropsychol Soc 13: 781–790.PubMedGoogle Scholar
  11. Cysique LA, Maruff P, Brew BJ (2004). Prevalence and pattern of neuropsychological impairment in human immunodeficiency virus-infected/acquired immunodeficiency syndrome (HIV/AIDS) patients across preand post-highly active anti-retroviral therapy eras: a combined study of two cohorts. J NeuroVirol 10: 350–357.CrossRefPubMedGoogle Scholar
  12. Cysique LA, Maruff P, Brew BJ (2006). The neuropsychological profile of symptomatic AIDS and ADC patients in the pre-HAART era: a meta-analysis. J Int Neuropsychol Soc 12: 368–382.CrossRefPubMedGoogle Scholar
  13. Cysique LA, Vaida F, Letendre S, Gibson S, Cherner M, Woods SP, McCutchan JA, Heaton RK, Ellis RJ (2009). Dynamics of cognitive change in impaired HIV-positive patients initiating anti-retroviral therapy. Neurology 73: 342–348.CrossRefPubMedGoogle Scholar
  14. Ferrando S, Van GW, McElhiney M, Goggin K, Sewell M, Rabkin J (1998). Highly active anti-retroviral treatment in HIV infection: benefits for neuropsychological function. AIDS 12: F65-F70.CrossRefPubMedGoogle Scholar
  15. Ferrando SJ, Rabkin JG, Van GW, Lin SH, McElhiney M (2003). Longitudinal improvement in psychomotor processing speed is associated with potent combination anti-retroviral therapy in HIV-1 infection. J Neuropsychiatry Clin Neurosci 15: 208–214.PubMedGoogle Scholar
  16. Grant I (2008). Neurocognitive disturbances in HIV. Int Rev Psychiatry 20: 33–47.CrossRefPubMedGoogle Scholar
  17. Grant I, Sacktor N, McArthur JC (2005). HIV and neurocognitive disorders. In: The neurology of AIDS. Gendelman H, Grant I, Everall I, Lipton S, Swindells S (eds.). Oxford, UK: Oxford University Press, pp 359–374.Google Scholar
  18. Gupta JD, Satishchandra P, Gopukumar K, Wilkie F, Waldrop-Valverde D, Ellis R, Ownby R, Subbakrishna DK, Desai A, Kamat A, Ravi V, Rao BS, Satish KS, Kumar M (2007). Neuropsychological deficits in human immunodeficiency virus type 1 clade C-seropositive adults from South India. J NeuroVirol 13: 195–202.CrossRefPubMedGoogle Scholar
  19. Hightower GK, Letendre SL, Cherner M, Gibson SA, Ellis RJ, Wolfson TJ, Gamst AC, Ignacio CC, Heaton RK, Grant I, Richman DD, Smith DM (2009). Select resistanceassociated mutations in blood are associated with lower CSF viral loads and better neuropsychological performance. Virology 394: 243–248.CrossRefPubMedGoogle Scholar
  20. Janssen RS, Cornblath DR, Epstein LG, McArthur J, Price RW (1991). Nomenclature and research case definitions for neurological manifestations of human immunodeficiency virus type-1 (HIV-1) infection. Report of a Working Group of the American Academy of Neurology AIDS Task Force. Neurology 41: 778–785.Google Scholar
  21. Joska JA, Thomas KG, Stein DJ, Seedat S, Carey PD, Laidlaw D, Paul RH (2009). Neuropsychological profile of patients commencing HAART in Cape Town South Africa—preliminary findings [unpublished work].Google Scholar
  22. Kanki P, Hamel D, Sankale J, Hsieh C, Thior I, Barin F, Woodcock S, Gueye-Ndiaye A, Zhang E, Montano M, Siby T, Marlink R, Ndoye I, Essex M, Mboup S (1999). Human immunodeficiency virus type 1 subtypes differ in disease progression. J Infect Dis 179: 68–73.CrossRefPubMedGoogle Scholar
  23. Kiwanuka N, Laeyendecker O, Robb M, Kigozi G, Arroyo M, McCutchan F, Eller M, Makumbi F, Wabire-Mangen F, Serwadda D, Sewankambo N, Quinn T, Wawer M, Gray R (2008). Effect of human immunodeficiency virus type 1 (HIV-1) subtype on disease progression in persons from Rakai, Uganda, with incident HIV-1 infection. J Infect Dis 197: 707–713.CrossRefPubMedGoogle Scholar
  24. Lawton MP, Brody EM (1969). Assessment of older people: self-maintaining and instrumental activities of daily living. Gerontologist 9: 179–186.PubMedGoogle Scholar
  25. Letendre S, Marquie-Beck J, Capparelli E, Best B, Clifford D, Collier AC, Gelman BB, McArthur JC, McCutchan JA, Morgello S, Simpson D, Grant I, Ellis RJ (2008). Validation of the CNS penetration-effectiveness rank for quantifying anti-retroviral penetration into the central nervous system. Arch Neurol 65: 65–70.CrossRefPubMedGoogle Scholar
  26. Letendre SL, McCutchan JA, Childers ME, Woods SP, Lazzaretto D, Heaton RK, Grant I, Ellis RJ (2004). Enhancing anti-retroviral therapy for human immunodeficiency virus cognitive disorders. Ann Neurol 56: 416–423.CrossRefPubMedGoogle Scholar
  27. Manly JJ (2005). Advantages and disadvantages of separate norms for African Americans. Clin Neuropsychol 19: 270–275.CrossRefPubMedGoogle Scholar
  28. Marra CM, Zhao Y, Clifford DB, Letendre S, Evans S, Henry K, Ellis RJ, Rodriguez B, Coombs RW, Schifitto G, McArthur JC, Robertson K (2009). Impact of combination anti-retroviral therapy on cerebrospinal fluid HIV RNA and neurocognitive performance. AIDS 23: 1359–1366.CrossRefPubMedGoogle Scholar
  29. McArthur JC (2004). HIV dementia: an evolving disease. J Neuroimmunol 157: 3–10.CrossRefPubMedGoogle Scholar
  30. McArthur JC, Hoover DR, Bacellar H, Miller EN, Cohen BA, Becker JT, Graham NM, McArthur JH, Selnes OA, Jacobson LP (1993). Dementia in AIDS patients: incidence and risk factors. Multicenter AIDS Cohort Study. Neurology 43: 2245–2252.PubMedGoogle Scholar
  31. McCutchan JA, Wu JW, Robertson K, Koletar SL, Ellis RJ, Cohn S, Taylor M, Woods S, Heaton R, Currier J, Williams PL (2007). HIV suppression by HAART preserves cognitive function in advanced immune-reconstituted AIDS patients. AIDS 21: 1109–1117.CrossRefPubMedGoogle Scholar
  32. Mishra M, Vetrivel S, Sidaapa NB, Ranga U, Seth P (2008). Clade-specific differences in neurotoxicity of human immunodeficiency virus-1 B and C Tat of human neurons: significance of dicysteine C30C31 motif. Ann Neurol 63: 366–376.CrossRefPubMedGoogle Scholar
  33. Nath A, Schiess N, Venkatesan A, Rumbaugh J, Sacktor N, McArthur J (2008). Evolution of HIV dementia with HIV infection. Int Rev Psychiatry 20: 25–31.CrossRefPubMedGoogle Scholar
  34. Parsons TD, Tucker KA, Hall CD, Robertson WT, Eron JJ, Fried MW, Robertson KR (2006). Neurocognitive functioning and HAART in HIV and hepatitis C virus coinfection. AIDS 20: 1591–1595.CrossRefPubMedGoogle Scholar
  35. Piccinini M, Rinaudo MT, Anselmino A, Buccinna B, Ramondetti C, Dematteis A, Ricotti E, Palmisano L, Mostert M, Tovo PA (2005). The HIV protease inhibitors nelfinavir and saquinavir, but not a variety of HIV reverse transcriptase inhibitors, adversely affect human proteasome function. Antivir Ther 10: 215–223.PubMedGoogle Scholar
  36. Rabbitt P, Diggle P, Holland F, McInnes L (2004). Practice and drop-out effects during a 17-year longitudinal study of cognitive aging. J Gerontol B Psychol Sci Soc Sci 59: 84–97.Google Scholar
  37. Ranga U, Shankarappa R, Siddappa NB, Ramakrishna L, Nagendran R, Mahalingam M, Mahadevan A, Jayasuryan N, Satishchandra P, Shankar SK, Prasad VR (2004). Tat protein of human immunodeficiency virus type 1 subtype C strains is a defective chemokine. J Virol 78: 2586–2590.CrossRefPubMedGoogle Scholar
  38. Robertson K, Su Z, Krambrink A, Evans SR, Havlir DV, Margolis DM, (2007). This is your brain off drugs: neurocognitive function before and after ART discontinuation in patients with high CD4 nadir (ACTG A5170). Presented at the 14th Conference on Retroviruses and Opportunistic Infections, Los Angeles, February 25–28.Google Scholar
  39. Robertson KR, Robertson WT, Ford S, Watson D, Fiscus S, Harp AG, Hall CD (2004). Highly active anti-retroviral therapy improves neurocognitive functioning. J Acquir Immune Defic Syndr 36: 562–566.CrossRefPubMedGoogle Scholar
  40. Robertson KR, Smurzynski M, Parsons TD, Wu K, Bosch RJ, Wu J, McArthur JC, Collier AC, Evans SR, Ellis RJ (2007). The prevalence and incidence of neurocognitive impairment in the HAART era. AIDS 21: 1915–1921.CrossRefPubMedGoogle Scholar
  41. Sacktor N, McDermott MP, Marder K, Schifitto G, Selnes OA, McArthur JC, Stern Y, Albert S, Palumbo D, Kieburtz K, De Marcaida JA, Cohen B, Epstein L (2002). HIV-associated cognitive impairment before and after the advent of combination therapy. J Neuro-Virol 8: 136–142.Google Scholar
  42. Sacktor N, Nakasujja N, Skolasky R, Robertson K, Wong M, Musisi S, Ronald A, Katabira E (2006). Anti-retroviral therapy improves cognitive impairment in HIV+ individuals in sub-Saharan Africa. Neurology 67: 311–314.CrossRefPubMedGoogle Scholar
  43. Sacktor N, Nakasujja N, Skolasky R.L, Robertson K, Musisi S, Ronald A, Katabira E, Clifford DB (2009). Benefits and risks of stavudine therapy for HIVassociated neurologic complications in Uganda. Neurology 72: 165–170.CrossRefPubMedGoogle Scholar
  44. Sacktor N, Skolasky RL, Tarwater PM, McArthur JC, Selnes OA, Becker J, Cohen B, Visscher B, Miller EN (2003). Response to systemic HIV viral load suppression correlates with psychomotor speed performance. Neurology 61: 567–569.PubMedGoogle Scholar
  45. Sacktor NC, Bacellar H, Hoover DR, Nance-Sproson TE, Selnes OA, Miller EN, Dal Pan GJ, Kleeberger C, Brown A, Saah A, McArthur JC (1996). Psychomotor slowing in HIV infection: a predictor of dementia AIDS and death. J NeuroVirol 2: 404–410.CrossRefPubMedGoogle Scholar
  46. Sacktor NC, Skolasky RL, Lyles RH, Esposito D, Selnes OA, McArthur JC (2000). Improvement in HIV-associated motor slowing after anti-retroviral therapy including protease inhibitors. J NeuroVirol 6: 84–88.CrossRefPubMedGoogle Scholar
  47. Schweinsburg BC, Taylor MJ, Alhassoon OM, Gonzalez R, Brown GG, Ellis RJ, Letendre S, Videen JS, McCutchan JA, Patterson TL, Grant I (2005). Brain mitochondrial injury in human immunodeficiency virus-seropositive (HIV+) individuals taking nucleoside reverse transcriptase inhibitors. J NeuroVirol 11: 356–364.CrossRefPubMedGoogle Scholar
  48. Suarez S, Baril L, Stankoff B, Khellaf M, Dubois B, Lubetzki C, Bricaire F, Hauw JJ (2001). Outcome of patients with HIV-1-related cognitive impairment on highly active anti-retroviral therapy. AIDS 15: 195–200.CrossRefPubMedGoogle Scholar
  49. Tozzi V, Balestra P, Galgani S, Narciso P, Ferri F, Sebastiani G, D’Amato C, Affricano C, Pigorini F, Pau FM, De Felici FM, Benedetto A (1999). Positive and sustained effects of highly active anti-retroviral therapy on HIV-1-associated neurocognitive impairment. AIDS 13: 1889–1897.CrossRefPubMedGoogle Scholar
  50. Valcour VG, Shiramizu BT, Sithinamsuwan P, Nidhinandana S, Ratto-Kim S, Ananworanich J, Siangphoe U, Kim JH, de Souza M, Degruttola V, Paul RH, Shikuma CM (2009). HIV DNA and cognition in a Thai longitudinal HAART initiation cohort: the SEARCH 001 Cohort Study. Neurology 72: 992–998.CrossRefPubMedGoogle Scholar
  51. Venkataramana A, Pardo CA, McArthur JC, Kerr DA, Irani DN, Griffin JW, Burger P, Reich DS, Calabresi PA, Nath A (2006). Immune reconstitution inflammatory syndrome in the CNS of HIV-infected patients. Neurology 67: 383–388.CrossRefPubMedGoogle Scholar
  52. Verbiest W, Brown S, Cohen C, Conant M, Henry K, Hunt S, Sension M, Stein A, Stryker R, Thompson M, Schel P, Van Den Broeck R, Bloor S, Alcorn T, Van Houtte M, Larder B, Hertogs K (2001). Prevalence of HIV-1 drug resistance in anti-retroviral-naive patients: a prospective study. AIDS 15: 647–650.CrossRefPubMedGoogle Scholar
  53. Wojna V, Nath A (2006). Challenges to the diagnosis and management of HIV dementia. AIDS Read 16: 615–4, 626, 629.PubMedGoogle Scholar

Copyright information

© Journal of NeuroVirology, Inc. 2010

Authors and Affiliations

  • John A. Joska
    • 1
    Email author
  • Hetta Gouse
    • 1
  • Robert H. Paul
    • 2
  • Dan J. Stein
    • 1
  • Alan J. Flisher
    • 1
  1. 1.Department of Psychiatry and Mental HealthUniversity of Cape TownCape TownSouth Africa
  2. 2.Department of Psychology and Behavioral NeuroscienceUniversity of MissouriSt. LouisUSA

Personalised recommendations