Journal of NeuroVirology

, Volume 16, Issue 2, pp 115–124 | Cite as

Peripheral biomarkers do not correlate with cognitive impairment in highly active antiretroviral therapy—treated subjects with human immunodeficiency virus type 1 infection

  • Bing Sun
  • Linda Abadjian
  • Hans Rempel
  • Cyrus Calosing
  • Johannes Rothlind
  • Lynn Pulliam


Neuropsychological (NP) impairments in human immunodeficiency virus (HIV)-infected individuals remain high despite the introduction of highly active antiretroviral therapy (HAART). We sought to determine whether or not a monocyte gene expression profile along with other peripheral factors would correlate with neuropsychological impairment among HIV-infected individuals. Forty-four HIV-1-seropositive subjects (HIV+) on HAART and 11 HIV-1-seronegative controls (HIV−) had NP testing and blood drawn for monocyte gene expression analysis. All HIV+ subjects were assessed for CD4 counts, apolipoprotein E (ApoE) genotype, viral load, and plasma lipopolysaccharide (LPS) and soluble CD14 (sCD14). NP scores were normalized to age, gender, and education. Twenty-five percent of HIV+ individuals showed abnormal NP testing results (>1.5 SD below normal in two domains). HIV+ individuals had deficits in attention/working memory, verbal learning, and information processing speed compared to HIV− controls. There was no correlation between overall NP impairment and plasma viral load, level of education, age, ethnic diversity, sCD14, plasma LPS, CD4 cell count, ApoE genotype, or years of infection. However, greater years of infection had worse visual learning performance. sCD14 and CD4 nadir positively correlated with information processing speed and fine motor skills, respectively. LPS correlated with viral load but not cognitive impairment. Monocyte gene expression confirmed a chronic inflammatory profile that correlated with viral load but not cognition. No blood index or profile was associated with overall NP impairment.


gene HAART HIV monocyte microarray neuropsychology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ancuta P, Kamat A, Kunstman KJ, Kim EY, Autissier P, Wurcel A, Zaman T, Stone D, Mefford M, Morgello S, Singer EJ, Wolinsky SM, Gabuzda D (2008). Microbial translocation is associated with increased monocyte activation and dementia in AIDS patients. PLoS ONE 3: e2516.CrossRefPubMedGoogle Scholar
  2. Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M, Clifford DB, Cinque P, Epstein LG, Goodkin K, Gisslen M, Grant I, Heaton RK, Joseph J, Marder K, Marra CM, McArthur JC, Nunn M, Price RW, Pulliam L, Robertson KR, Sacktor N, Valcour V, Wojna VE (2007). Updated research nosology for HIV-associated neurocognitive disorders. Neurology 69: 1789–1799.CrossRefPubMedGoogle Scholar
  3. Benedict RH (1997). Brief Visuospatial Memory Test—Revised (BVMT-R). Odessa, FL: Psychological Assessment Resources.Google Scholar
  4. Benton AL, Hamsher K, Sivan AB (1983). Multilingual aphasia examination, 3rd ed. Iowa City, IA: AJA Associates.Google Scholar
  5. Bhaskaran K, Mussini C, Antinori A, Walker AS, Dorrucci M, Sabin C, Phillips A, Porter K (2008). Changes in the incidence and predictors of human immunodeficiency virus-associated dementia in the era of highly active antiretroviral therapy. Ann Neurol 63: 213–221.CrossRefPubMedGoogle Scholar
  6. Caradonna L, Mastronardi ML, Magrone T, Cozzolongo R, Cuppone R, Manghisi OG, Caccavo D, Pellegrino NM, Amoroso A, Jirillo E, Amati L (2002). Biological and clinical significance of endotoxemia in the course of hepatitis C virus infection. Curr Pharm Des 8: 995–1005.CrossRefPubMedGoogle Scholar
  7. Carey CL, Woods SP, Gonzalez R, Conover E, Marcotte TD, Grant I, Heaton RK (2004). Predictive validity of global deficit scores in detecting neuropsychological impairment in HIV infection. J Clin Exp Neuropsychol 26: 307–319.CrossRefPubMedGoogle Scholar
  8. Cherner M, Masliah E, Ellis RJ, Marcotte TD, Moore DJ, Grant I, Heaton RK (2002). Neurocognitive dysfunction predicts postmortem findings of HIV encephalitis. Neurology 59: 1563–1567.PubMedGoogle Scholar
  9. Clifford DB (2008). HIV-associated neurocognitive disease continues in the antiretroviral era. Top HIVMed 16: 94–98.Google Scholar
  10. Clifford DB, Mitike MT, Mekonnen Y, Zhang J, Zenebe G, Melaku Z, Zewde A, Gessesse N, Wolday D, Messele T, Teshome M, Evans S (2007). Neurological evaluation of untreated human immunodeficiency virus infected adults in Ethiopia. J NeuroVirol 13: 67–72.CrossRefPubMedGoogle Scholar
  11. Cysique LA, Maruff P, Brew BJ (2006). Variable benefit in neuropsychological function in HIV-infected HAARTtreated patients. Neurology 66: 1447–1450.CrossRefPubMedGoogle Scholar
  12. Delis DC, Kaplan E, Kramer JH, Ober BA (1987). California Verbal Learning Test—Second Edition (CVLT-II). San Antonio, TX: The Psychological Corporatino.Google Scholar
  13. Dolganiuc A, Norkina O, Kodys K, Catalano D, Bakis G, Marshall C, Mandrekar P, Szabo G (2007). Viral and host factors induce macrophage activation and loss of tolllike receptor tolerance in chronic HCV infection. Gastroenterology 133: 1627–1636.CrossRefPubMedGoogle Scholar
  14. Everall I, Vaida F, Khanlou N, Lazzaretto D, Achim C, Letendre S, Moore D, Ellis R, Cherne M, Gelman B, Morgello S, Singer E, Grant I, Masliah E (2009). Cliniconeuropathologic correlates of human immunodeficiency virus in the era of antiretroviral therapy. J NeuroVirol 15: 1–11.CrossRefGoogle Scholar
  15. Everall IP, Heaton RK, Marcotte TD, Ellis RJ, McCutchan JA, Atkinson JH, Grant I, Mallory M, Masliah E (1999). Cortical synaptic density is reduced in mild to moderate human immunodeficiency virus neurocognitive disorder. HNRC Group. HIV Neurobehavioral Research Center. Brain Pathol 9: 209–217.CrossRefPubMedGoogle Scholar
  16. Ferrier L, Berard F, Debrauwer L, Chabo C, Langella P, Bueno L, Fioramonti J (2006). Impairment of the intestinal barrier by ethanol involves enteric microflora and mast cell activation in rodents. Am J Pathol 168: 1148–1154.CrossRefPubMedGoogle Scholar
  17. First MB, Spitzer RL, Gibbon M, Williams JBW (1997). Structured, Clinical Interview for DSM-IV (SCID-I; Clinician Version). Washington, DC: American Psychiatric Association.Google Scholar
  18. Fischer-Smith T, Croul S, Sverstiuk AE, Capini C, L’Heureux D, Regulier EG, Richardson MW, Amini S, Morgello S, Khalili K, Rappaport J (2001). CNS invasion by CD14+/CD16+ peripheral blood-derived monocytes in HIV dementia: perivascular accumulation and reservoir of HIV infection. J NeuroVirol 7: 528–541.CrossRefPubMedGoogle Scholar
  19. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JY, Zhang J (2004). Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5: R80.CrossRefPubMedGoogle Scholar
  20. Giulian D, Vaca K, Noonan CA (1990). Secretion of neurotoxins by mononuclear phagocytes infected with HIV-1. Science 250: 1593–1596.CrossRefPubMedGoogle Scholar
  21. Golden CJ (1978). Stroop Color and Work Test. Chicago, IL: Stoelting.Google Scholar
  22. Gopukumar K, Rao SL, Satishchandra P, Dasgupta J, Ellis RJ, Subbakrishna D, Mariamma P, Kamat A, Desai A, Ravi V, Rao B, Satish K, Kumar M (2008). Cognitive changes in asymptomatic drug-naive human immunodeficiency virus type 1 clade C infection. J NeuroVirol 14: 1–6.CrossRefGoogle Scholar
  23. Grant I (2008). Neurocognitive disturbances in HIV. IntRev Psychiatry 20: 33–47.CrossRefGoogle Scholar
  24. Grant I, Atkinson JH, Hesselink JR, Kennedy CJ, Richman DD, Spector SA, McCutchan JA (1987). Evidence for early central nervous system involvement in the acquired immunodeficiency syndrome (AIDS) and other human immunodeficiency virus (HIV) infections. Studies with neuropsychologic testing and magnetic resonance imaging. Ann Intern Med 107: 828–836.PubMedGoogle Scholar
  25. Grant I, Sacktor H, McArthur J (2005). HIV neurocognitive disorders. In: The neurology of AIDS. Gendelman HE, Grant I, Everall IP, Lipton SA, Swindells S (eds). London: Oxford University Press, pp 357–373.Google Scholar
  26. Heaton RK, Chelune, GJ, Talley JL, Kay GG, Curtiss G (1993). Wisconsin Cart Sorting Test (WCST) manual, revised and expanded edition. Odessa, FL: Psychological Assessment Resources.Google Scholar
  27. Heaton RK, Chelune GJ, Talley JL, Kay GG, Curtiss G (2004). Revised comprehensive norms for an expanded Halstead-Reitan Battery: demographically adjusted neuropsychological norms for African American and Caucasian adults. Lutz, FL: Psychological Assessment Resources.Google Scholar
  28. Heaton RK, Grant I, Butters N, White DA, Kirson D, Atkinson JH, McCutchan JA, Taylor MJ, Kelly MD, Ellis RJ, etal (1995). The HNRC 500—neuropsychology of HIV infection at different disease stages. HIV Neurobehavioral Research Center. J Int Neuropsychol Soc 1: 231–251.CrossRefPubMedGoogle Scholar
  29. Hill JM, Bhattacharjee PS, Neumann DM (2007). Apolipoprotein E alleles can contribute to the pathogenesis of numerous clinical conditions including HSV-1 corneal disease. Exp Eye Res 84: 801–811.CrossRefPubMedGoogle Scholar
  30. Hixson JE, Vernier DT (1990). Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with HhaI. J Lipid Res 31: 545–548.PubMedGoogle Scholar
  31. Ihaka R, Gentleman R (1996). R: a language for data analysis and graphics. J Comput Graph Stat 5: 299–314.CrossRefGoogle Scholar
  32. Jernigan TL, Archibald S, Hesselink JR, Atkinson JH, Velin RA, McCutchan JA, Chandler J, Grant I (1993). Magnetic resonance imaging morphometric analysis of cerebral volume loss in human immunodeficiency virus infection. The HNRC Group. Arch Neurol 50: 250–255.PubMedGoogle Scholar
  33. Koopmans PP, Ellis R, Best BM, Letendre S (2009). Should antiretroviral therapy for HIV infection be tailored for intracerebral penetration? Neth J Med 67: 206–211.PubMedGoogle Scholar
  34. Lezak MD (2004). Neuropsychological assessment, 4th ed. Oxford, New York: Oxford University Press.Google Scholar
  35. Liu Y, Tang XP, McArthur JC, Scott J, Gartner S (2000). Analysis of human immunodeficiency virus type 1 gp160 sequences from a patient with HIV dementia: evidence for monocyte trafficking into brain. J NeuroVirol 6(Suppl 1): S70-S81.PubMedGoogle Scholar
  36. Masliah E, Achim CL, Ge N, De Teresa R, Terry RD, Wiley CA (1992). Spectrum of human immunodeficiency virus-associated neocortical damage. Ann Neurol 32: 321–329.CrossRefPubMedGoogle Scholar
  37. Masliah E, Heaton RK, Marcotte TD, Ellis RJ, Wiley CA, Mallory M, Achim CL, McCutchan JA, Nelson JA, Atkinson JH, Grant I (1997). Dendritic injury is a pathological substrate for human immunodeficiency virusrelated cognitive disorders. HNRC Group. The HIV Neurobehavioral Research Center Ann Neurol 42: 963–972.CrossRefPubMedGoogle Scholar
  38. McArthur JC (2004). HIV dementia: an evolving disease. J Neuroimmunol 157: 3–10.CrossRefPubMedGoogle Scholar
  39. McArthur JC, Brew BJ, Nath A (2005). Neurological complications of HIV infection. Lancet Neurol 4: 543–555.CrossRefPubMedGoogle Scholar
  40. Moore DJ, Masliah E, Rippeth JD, Gonzalez R, Carey CL, Cherner M, Ellis RJ, Achim CL, Marcotte TD, Heaton RK, Grant I (2006). Cortical and subcortical neurodegeneration is associated with HIV neurocognitive impairment. AIDS 20: 879–887.CrossRefPubMedGoogle Scholar
  41. Navia B, Price R (2005). An overview of the clinical and biological features of the AIDS dementia complex. In: The neurology of AIDS. Gendelman HE, Grant I, Everall IP, Lipton SA, Swindells S (eds). Oxford, New York: Oxford University Press, pp 339–356.Google Scholar
  42. Odiase FE, Ogunrin OA, Ogunniyi AA (2007). Memory performance in HIV/AIDS—a prospective case control study. Can J Neurol Sci 34: 154–159.PubMedGoogle Scholar
  43. Paul RH, Yiannoutsos CT, Miller EN, Chang L, Marra CM, Schifitto G, Ernst T, Singer E, Richards T, Jarvik GJ, Price R, Meyerhoff DJ, Kolson D, Ellis RJ, Gonzalez G, Lenkinski RE, Cohen RA, Navia BA (2007). Proton MRS and neuropsychological correlates in AIDS dementia complex: evidence of subcortical specificity. J Neuropsychiatry Clin Neurosci 19: 283–292.PubMedGoogle Scholar
  44. Pulliam L, Gascon R, Stubblebine M, McGuire D, McGrath MS (1997). Unique monocyte subset in patients with AIDS dementia. Lancet 349: 692–695.CrossRefPubMedGoogle Scholar
  45. Pulliam L, Sun B, Rempel H (2004). Invasive chronic inflammatory monocyte phenotype in subjects with high HIV-1 viral load. J Neuroimmunol 157: 93–98.CrossRefPubMedGoogle Scholar
  46. Robertson KR, Smurzynski M, Parsons TD, Wu K, Bosch RJ, Wu J, McArthur JC, Collier AC, Evans SR, Ellis RJ (2007). The prevalence and incidence of neurocognitive impairment in the HAART era. AIDS 21: 1915–1921.CrossRefPubMedGoogle Scholar
  47. Ryan LA, Zheng J, Brester M, Bohac D, Hahn F, Anderson J, Ratanasuwan W, Gendelman HE, Swindells S (2001). Plasma levels of soluble CD14 and tumor necrosis factor-alpha type II receptor correlate with cognitive dysfunction during human immunodeficiency virus type 1 infection. J Infect Dis 184: 699–706.CrossRefPubMedGoogle Scholar
  48. Sacktor N, Nakasujja N, Skolasky R, Robertson K, Wong M, Musisi S, Ronald A, Katabira E (2006). Antiretroviral therapy improves cognitive impairment in HIV+ individuals in sub-Saharan Africa. Neurology 67: 311–314.CrossRefPubMedGoogle Scholar
  49. Sacktor N, Skolasky RL, Tarwater PM, McArthur JC, Selnes OA, Becker J, Cohen B, Visscher B, Miller EN (2003). Response to systemic HIV viral load suppression correlates with psychomotor speed performance. Neurology 61: 567–569.PubMedGoogle Scholar
  50. Schmitt FA, Bigley JW, McKinnis R, Logue PE, Evans RW, Drucker JL (1988). Neuropsychological outcome of zidovudine (AZT) treatment of patients with AIDS and AIDS-related complex. N Engl J Med 319: 1573–1578.CrossRefPubMedGoogle Scholar
  51. Smith A (1982). Symbol Digit Modalities Test (SDMT) manual, revised edition. Los Angeles, CA: Western Psychological Services.Google Scholar
  52. Stout JC, Ellis RJ, Jernigan TL, Archibald SL, Abramson I, Wolfson T, McCutchan JA, Wallace MR, Atkinson JH, Grant I (1998). Progressive cerebral volume loss in human immunodeficiency virus infection: a longitudinal volumetric magnetic resonance imaging study. HIV Neurobehavioral Research Center Group Arch Neurol 55: 161–168.CrossRefPubMedGoogle Scholar
  53. Struss DT, Stethem LL, Poirier CA (1987). Comparison of three tests of attention and rapid information processing across six age groups. Clin Neuropsychol 1: 139–152.CrossRefGoogle Scholar
  54. Valcour VG, Sithinamsuwan P, Nidhinandana S, Thitivichianlert S, Ratto-Kim S, Apateerapong W, Shiramizu BT, Desouza MS, Chitpatima ST, Watt G, Chuenchitra T, Robertson KR, Paul RH, McArthur JC, Kim JH, Shikuma CM (2007). Neuropsychological abnormalities in patients with dementia in CRF 01_AE HIV-1 infection. Neurology 68: 525–527.CrossRefPubMedGoogle Scholar
  55. Wechsler D (1997). Wechsler Adult Intelligence Scale 3rd ed. San Antonio, TX: The Psychological Corporation.Google Scholar

Copyright information

© Journal of NeuroVirology, Inc. 2010

Authors and Affiliations

  • Bing Sun
    • 1
  • Linda Abadjian
    • 2
  • Hans Rempel
    • 1
  • Cyrus Calosing
    • 1
  • Johannes Rothlind
    • 2
  • Lynn Pulliam
    • 1
    • 3
  1. 1.Departments of Laboratory MedicineSan Francisco Veterans Affairs Medical CenterSan FranciscoUSA
  2. 2.Mental HealthSan Francisco Veterans Affairs Medical CenterSan FranciscoUSA
  3. 3.Department of Laboratory MedicineUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations