Journal of NeuroVirology

, Volume 15, Issue 5–6, pp 390–400 | Cite as

Measurement of soluble inflammatory mediators in cerebrospinal fluid of human immunodeficiency virus-positive patients at distinct stages of infection by solid-phase protein array

  • Thorsten Nolting
  • Antje Lindecke
  • Eleni Koutsilieri
  • Matthias Maschke
  • Ingo-W. Husstedt
  • Sieghart Sopper
  • Olaf Stüve
  • Hans-Peter Hartung
  • Gabriele Arendt
  • Competence Network HIV/AIDS
Article

Abstract

The objective of this study was to evaluate immune cytokine expression in cerebrospinal fluid (CSF) of patients with human immunodeficiency virus-1 (HIV-1)-associated dementia (HAD) using a novel cytokine array assay. HIV-1 induces a condition resembling classical subcortical dementia, known as HAD. The immune mechanisms contributing to HAD have not been elucidated. Cytokine expression in CSF was determined by solid-phase protein array in 33 neurologically asymptomatic HIV-positive male patients and were compared to levels in non-HIV controls and patients with HAD. Neurological examinations and lumbar and venous punctures were conducted in all patients and controls. Interleukin (IL)-1, IL-4, and IL-10, were up-regulated in all treated acquired immunodeficiency syndrome (AIDS) patients independent of neurological status compared to controls. In contrast, interferon gamma (IFN-γ), IL-1α, IL-15, and tumor necrosis factor alpha (TNF-α) were highly expressed in patients with HAD compared to undemented HIV-positive patients. These results show that solid-phase protein array can detect immunological changes in patients infected with HIV. Cytokine expression levels differ in different disease stages and in patients on different treatment paradigms. Pending further validation on a larger number of patients, this method may be a useful tool in CSF diagnostics and the longitudinal evaluation of patient with HAD.

Keywords

chemokine cytokine HIV neuro-AIDS protein array 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M, Clifford DB, Cinque P, Epstein LG, Goodkin K, Gisslen M, Grant I, Heaton RK, Joseph J, Marder K, Marra CM, McArthur JC, Nunn M, Price RW, Pulliam L, Robertson KR, Sacktor N, Valcour V, Wojna VE (2007). Updated research nosology for HIV-associated neurocognitive disorders. Neurology 69: 1789–1799.CrossRefPubMedGoogle Scholar
  2. Aquaro S, Ronga L, Pollicita M, Antinori A, Ranazzi A, Perno CF (2005). Human immunodeficiency virus infection and acquired immunodeficiency syndrome dementia complex: role of cells of monocyte-macrophage lineage. J NeuroVirol 11(Suppl 3): 58–66.CrossRefPubMedGoogle Scholar
  3. Arendt G, Hefter H, Hilperath F, von Giesen HJ, Strohmeyer G, Freund HJ (1994). Motor analysis predicts progression in HIV-associated brain disease. J Neurol Sci 123: 180–185.CrossRefPubMedGoogle Scholar
  4. Arendt G, Nolting T, Frisch C, Husstedt IW, Gregor N, Koutsilieri E, Maschke M, Angerer A, Obermann M, Neuen-Jacob E, Adams O, Loeffert S, Riederer P, ter Meulen V, Sopper S (2007). Intrathecal viral replication and cerebral deficits in different stages of human immunodeficiency virus disease. J NeuroVirol 13: 225–232.CrossRefPubMedGoogle Scholar
  5. Arendt G, von Giesen HJ (2002). Human immunodeficiency virus dementia: evidence of a subcortical process from studies of fine finger movements. J NeuroVirol 8(Suppl 2): 27–32.CrossRefPubMedGoogle Scholar
  6. Bangs SC, McMichael AJ, Xu XN (2006). Bystander T cell activation—implications for HIV infection and other diseases. Trends Immunol 27: 518–524.CrossRefPubMedGoogle Scholar
  7. Buch S, Pinson D, King CL, Raghavan R, Hou Y, Li Z, Adany I, Hicks A, Villinger F, Kumar A, Narayan O (2001). Inhibitory and enhancing effects of IFN-gamma and IL-4 on SHIV(KU) replication in rhesus macaque macrophages: correlation between Th2 cytokines and productive infection in tissue macrophages during late-stage infection. Cytokine 13: 295–304.CrossRefPubMedGoogle Scholar
  8. Clerici M, Shearer GM (1993). A TH1→TH2 switch is a critical step in the etiology of HIV infection. Immunol Today 14: 107–111.CrossRefPubMedGoogle Scholar
  9. Cysique LA, Maruff P, Brew BJ (2004). Prevalence and pattern of neuropsychological impairment in human immunodeficiency virus-infected/acquired immunodeficiency syndrome (HIV/AIDS) patients across pre- and post-highly active antiretroviral therapy eras: a combined study of two cohorts. J NeuroVirol 10: 350–357.CrossRefPubMedGoogle Scholar
  10. Dhar A, Gardner J, Borgmann K, Wu L, Ghorpade A (2006). Novel role of TGF-beta in differential astrocyte-TIMP-1 regulation: implications for HIV-1-dementia and neuroinflammation. J Neurosci Res 83: 1271–1280.CrossRefPubMedGoogle Scholar
  11. Ehl S, Hombach J, Aichele P, Hengartner H, Zinkernagel RM (1997). Bystander activation of cytotoxic T cells: studies on the mechanism and evaluation of in vivo significance in a transgenic mouse model. J Exp Med 185: 1241–1251.CrossRefPubMedGoogle Scholar
  12. Faller EM, McVey MJ, Kakal JA, MacPherson PA (2006). Interleukin-7 receptor expression on CD8 T-cells is downregulated by the HIV Tat protein. J Acquir Immune Defic Syndr 43: 257–269.CrossRefPubMedGoogle Scholar
  13. Galli G, Annunziato F, Cosmi L, Manetti R, Maggi E, Romagnani S (2001). Th1 and th2 responses, HIV-1 coreceptors, and HIV-1 infection. J Biol Regul Homeost Agents 15: 308–313.PubMedGoogle Scholar
  14. Gallo P, Frei K, Rordorf C, Lazdins J, Tavolato B, Fontana A (1989). Human immunodeficiency virus type 1 (HIV-1) infection of the central nervous system: an evaluation of cytokines in cerebrospinal fluid. J Neuroimmunol 23: 109–116.CrossRefPubMedGoogle Scholar
  15. Gallo P, Sivieri S, Rinaldi L, Yan XB, Lolli F, De Rossi A, Tavolato B (1994). Intrathecal synthesis of interleukin-10 (IL-10) in viral and inflammatory diseases of the central nervous system. J Neurol Sci 126: 49–53.CrossRefPubMedGoogle Scholar
  16. Garin A, Tarantino N, Faure S, Daoudi M, Lecureuil C, Bourdais A, Debre P, Deterre P, Combadiere C (2003). Two novel fully functional isoforms of CX3CR1 are potent HIV coreceptors. J Immunol 171: 5305–5312.PubMedGoogle Scholar
  17. Hammer SM, Saag MS, Schechter M, Montaner JS, Schooley RT, Jacobsen DM, Thompson MA, Carpenter CC, Fischl MA, Gazzard BG, Gatell JM, Hirsch MS, Katzenstein DA, Richman DD, Vella S, Yeni PG, Volberding PA (2006). Treatment for adult HIV infection: 2006 recommendations of the International AIDS Society-USA panel. JAMA 296: 827–843.CrossRefPubMedGoogle Scholar
  18. Heeney JL, Plotkin SA (2006). Immunological correlates of protection from HIV infection and disease. Nat Immunol 7: 1281–1284.CrossRefPubMedGoogle Scholar
  19. Kaul M, Lipton SA (2006). Mechanisms of neuronal injury and death in HIV-1 associated dementia. Curr HIV Res 4: 307–318.CrossRefPubMedGoogle Scholar
  20. Killebrew DA, Troelstrup D, Valcour V, Williams A, Aguon J, Sapalo D, Shikuma C, Ratto-Kim S, Shiramizu B (2005). Discordant plasma and cerebral spinal fluid cytokines/chemokines in relation to HIV-1-associated dementia. Cell Mol Biol (Noisy-le-grand) 51(Suppl): OL745-OL754.Google Scholar
  21. Lane BR, Strieter RM, Coffey MJ, Markovitz DM (2001). Human immunodeficiency virus type 1 (HIV-1)-induced GRO-alpha production stimulates HIV-1 replication in macrophages and T lymphocytes. J Virol 75: 5812–5822.CrossRefPubMedGoogle Scholar
  22. Lojek E, Bornstein RA (2005). The stability of neurocognitive patterns in HIV infected men: classification considerations. J Clin Exp Neuropsychol 27: 665–682.CrossRefPubMedGoogle Scholar
  23. Malaspina A, Moir S, Ho J, Wang W, Howell ML, O’Shea MA, Roby GA, Rehm CA, Mican JM, Chun TW, Fauci AS (2006). Appearance of immature/transitional B cells in HIV-infected individuals with advanced disease: correlation with increased IL-7. Proc Natl Acad Sci U S A 103: 2262–227.CrossRefPubMedGoogle Scholar
  24. Marchetti G, Gori A, Casabianca A, Magnani M, Franzetti F, Clerici M, Perno CF, Monforte A, Galli M, Meroni L (2006). Comparative analysis of T-cell turnover and homeostatic parameters in HIV-infected patients with discordant immune-virological responses to HAART. AIDS 20: 1727–1736.CrossRefPubMedGoogle Scholar
  25. McArthur JC (2004). HIV dementia: an evolving disease. J Neuroimmunol 157: 3–10.CrossRefPubMedGoogle Scholar
  26. McArthur JC, Brew BJ, Nath A (2005). Neurological complications of HIV infection. Lancet Neurol 4: 543–555.CrossRefPubMedGoogle Scholar
  27. McArthur JC, Haughey N, Gartner S, Conant K, Pardo C, Nath A, Sacktor N (2003). Human immunodeficiency virus-associated dementia: an evolving disease. J NeuroVirol 9: 205–221.PubMedGoogle Scholar
  28. Navia BA, Rostasy K (2005). The AIDS dementia complex: clinical and basic neuroscience with implications for novel molecular therapies. Neurotox Res 8: 3–24.CrossRefPubMedGoogle Scholar
  29. Nielsen UB, Geierstanger BH (2004). Multiplexed sandwich assays in microarray format. J Immunol Methods 290: 107–120.CrossRefPubMedGoogle Scholar
  30. Nolting T, Arendt G (2008). Cytokine findings in the CSF of HIV-positive patients. Future HIV Therapy 2: 59–67.CrossRefGoogle Scholar
  31. Polman CH, O’Connor PW, Havrdova E, Hutchinson M, Kappos L, Miller DH, Phillips JT, Lublin FD, Giovannoni G, Wajgt A, Toal M, Lynn F, Panzara MA, Sandrock AW (2006). A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 354: 899–910.CrossRefPubMedGoogle Scholar
  32. Romagnani S (2006). Regulation of the T cell response. Clin Exp Allergy 36: 1357–1366.CrossRefPubMedGoogle Scholar
  33. Rouse BT, Sarangi PP, Suvas S (2006). Regulatory T cells in virus infections. Immunol Rev 212: 272–286.CrossRefPubMedGoogle Scholar
  34. Rudick RA, Stuart WH, Calabresi PA, Confavreux C, Galetta SL, Radue EW, Lublin FD, Weinstock-Guttman B, Wynn DR, Lynn F, Panzara MA, Sandrock AW (2006). Natalizumab plus interferon beta-1a for relapsing multiple sclerosis. N Engl J Med 354: 911–923.CrossRefPubMedGoogle Scholar
  35. Schutzer SE, Brunner M, Fillit HM, Berger JR (2003). Autoimmune markers in HIV-associated dementia. J Neuroimmunol 138: 156–161.CrossRefPubMedGoogle Scholar
  36. Tong N, Perry SW, Zhang Q, James HJ, Guo H, Brooks A, Bal H, Kinnear SA, Fine S, Epstein LG, Dairaghi D, Schall TJ, Gendelman HE, Dewhurst S, Sharer LR, Gelbard HA (2000). Neuronal fractalkine expression in HIV-1 encephalitis: roles for macrophage recruitment and neuroprotection in the central nervous system. J Immunol 164: 1333–1339.PubMedGoogle Scholar
  37. Valcour V, Shikuma C, Shiramizu B, Watters M, Poff P, Selnes O, Holck P, Grove J, Sacktor N (2004). Higher frequency of dementia in older HIV-1 individuals: the Hawaii Aging with HIV-1 Cohort. Neurology 63: 822–827.PubMedGoogle Scholar
  38. Villard J, Dayer-Pastore F, Hamacher J, Aubert JD, Schlegel-Haueter S, Nicod LP (1995). GRO alpha and interleukin-8 in Pneumocystis carinii or bacterial pneumonia and adult respiratory distress syndrome. Am J Respir Crit Care Med 152: 1549–1554.PubMedGoogle Scholar
  39. Wahl SM, Allen JB, McCartney-Francis N, Morganti-Kossmann MC, Kossmann T, Ellingsworth L, Mai UE, Mergenhagen SE, Orenstein JM (1991). Macrophage- and astrocyte-derived transforming growth factor beta as a mediator of central nervous system dysfunction in acquired immune deficiency syndrome. J Exp Med 173: 981–991.CrossRefPubMedGoogle Scholar
  40. Yonekawa K, Harlan JM (2005). Targeting leukocyte integrins in human diseases. J Leukoc Biol 77: 129–140.CrossRefPubMedGoogle Scholar

Copyright information

© Journal of NeuroVirology, Inc. 2009

Authors and Affiliations

  • Thorsten Nolting
    • 1
  • Antje Lindecke
    • 2
  • Eleni Koutsilieri
    • 3
  • Matthias Maschke
    • 4
  • Ingo-W. Husstedt
    • 5
  • Sieghart Sopper
    • 6
  • Olaf Stüve
    • 1
    • 7
  • Hans-Peter Hartung
    • 1
  • Gabriele Arendt
    • 1
  • Competence Network HIV/AIDS
  1. 1.Department of NeurologyHeinrich-Heine-University, University Hospital DüsseldorfDüsseldorfGermany
  2. 2.Biomedical Research Center (BMFZ)Heinrich-Heine-UniversityDuesseldorfGermany
  3. 3.Department of Virology and ImmunobiologyUniversity of WürzburgWürzburgGermany
  4. 4.Department of NeurologyUniversity Hospital of Duisburg-Essen, University of Duisburg-EssenEssenGermany
  5. 5.Department of NeurologyUniversity of MünsterMünsterGermany
  6. 6.German Primate CenterGöttingenGermany
  7. 7.University of Texas, Southwestern Medical CenterDallasUSA

Personalised recommendations