Skip to main content
Log in

Total Energy Control of Aircraft Longitudinal Motion

  • Artificial Intelligence Methods
  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

The paper considers the creation of a system for controlling the longitudinal motion of aircraft based on the principle of total energy control. The structure of the control system is presented, including a kernel independent of aircraft and a transition to commands for elevator and thrust deflection obtained from the principle of inverse models. The control system is implemented for models of three aircraft with different aerodynamic configurations. The quality of regulation was studied by numerical simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

REFERENCES

  1. A. A. Lambregts, ‘‘Vertical flight path and speed control autopilot design using total energy principles,’’ in Guidance and Control Conference, Gatlinburg, Tenn., 1983 (American Institute of Aeronautics and Astronautics, 1983), pp. 559–569. https://doi.org/10.2514/6.1983-2239

  2. A. A. Lambregts, Automatic Flight Controls Concepts and Methods (Koninklijke Nederlandse Vereniging voor Luchtvaart, Woerden, The Netherlands, 1996).

    Google Scholar 

  3. A. A. Lambregts, ‘‘TECS generalized airplane control system design—An update,’’ in Advances in Aerospace Guidance, Navigation and Control, Ed. by Q. Chu, B. Mulder, D. Choukroun, E. J. van Kampen, C. de Visser, and G. Looye (Springer, Berlin, 2013), pp. 503–534. https://doi.org/10.1007/978-3-642-38253-6_30

    Book  Google Scholar 

  4. A. A. Lambregts, ‘‘Flight envelope protection strategies for automatic and augmented manual control,’’ in Proc. of the CEAS Conf. on Guidance, Navigation and Control (Delft, The Netherlands, 2013), pp. 1364–1383.

  5. K. R. Bruce, ‘‘Design and Verification by Nonlinear Simulation of a Mach/CAS Control Law for the NASA TSRV 8-737 Aircraft,’’ Final Report. NASA CR-178029 (1986).

  6. K. Bruce, J. R. Kelly, and Jr. Person, ‘‘NASA B737 flight test results of the Total Energy Control System,’’ in Astrodynamics Conf., Williamsburg, N.Y. (American Institute of Aeronautics and Astronautics, 1986), p. AIAA 1986-2143. https://doi.org/10.2514/6.1986-2143

  7. N. Kastner and G. Looye, ‘‘Generic TECS based autopilot for an electric high altitude solar powered aircraft,’’ in Proc. of the 2nd CEAS EuroGNC Conf. (Delft Univ. of Technology, Delft, The Netherlands, 2013), pp. 1324–1343.

  8. I. Kaminer and P. O’Shaughnessy, ‘‘4D-TECS integration for NASA TCV airplane,’’ NASA-CR-4231 (1989).

  9. Yi. Lim, A. Gardi, R. Sabatini, K. Ranasinghe, N. Ezer, K. Rodgers, and D. Salluce, ‘‘Optimal energy-based 4D guidance and control for terminal descent operations,’’ Aerosp. Sci. Technol. 95, 105436 (2019). https://doi.org/10.1016/j.ast.2019.105436

  10. K. R. Bruce, ‘‘NASA B737 flight test results of the Total Energy Control System,’’ NASA CR-178285 (1987). https://doi.org/10.2514/6.1986-2143

  11. E. Karlsson, S. P. Schatz, T. Baier, C. Dürhöfer, A. Gabrys, M. Hochstrasser, C. Krause, P. J. Lauffs, N. C. Mumm, K. Nürnberger, L. Peter, V. Schneider, P. Spiegel, L. Steinert, A. W. Zollitsch, and F. Holzapfel, ‘‘Development of an automatic flight path controller for a DA42 general aviation aircraft,’’ in Advances in Aerospace Guidance, Navigation and Control, Ed. by B. Döga, R. Gäbocki, D. Kordos, and M. Cugaj (Springer, Cham, 2018), pp. 121–139. https://doi.org/10.1007/978-3-319-65283-2_7

    Book  Google Scholar 

  12. M. Lamp and R. Luckner, ‘‘The total energy control concept for a motor glider,’’ in Advances in Aerospace Guidance, Navigation and Control, Ed. by Q. Chu, B. Mulder, D. Choukroun, EJ. van Kampen, C. de Visser, and G. Looye (Springer, Berlin, 2013), pp. 483–502. https://doi.org/10.1007/978-3-642-38253-6_29

    Book  Google Scholar 

  13. Sh.-W. Chen, P.-Ch. Chen, C.-D. Yang, and Ya.-F. Jeng, ‘‘Total energy control system for helicopter flight/propulsion integrated controller design,’’ J. Guidance, Control, Dyn. 30, 1030–1039 (2007). https://doi.org/10.2514/1.26670

    Article  ADS  Google Scholar 

  14. J. D. Brigido-González and H. Rodríguez-Cortés, ‘‘Experimental validation of an adaptive total energy control system strategy for the longitudinal dynamics of a fixed-wing aircraft,’’ J. Aerosp. Eng. 29, 11 (2016). https://doi.org/10.1061/(asce)as.1943-5525.0000512

    Article  Google Scholar 

  15. R. Rysdyk and R. K. Agarwal, ‘‘Nonlinear adaptive flight path and speed control using energy principles,’’ in AIAA Guidance, Navigation, and Control Conference and Exhibit, Monterey, Calif., 2002 (American Institute of Aeronautics and Astronautics, 2002), p. AIAA 2002-4440. https://doi.org/10.2514/6.2002-4440

  16. A. P. Kurdjukov, G. N. Natchinkina, and A. M. Shevtchenko, ‘‘Energy approach to flight control,’’ in Guidance, Navigation, and Control Conference and Exhibit (American Institute of Aeronautics and Astronautics, Boston, 1998), pp. 543–553. https://doi.org/10.2514/6.1998-4211

    Book  Google Scholar 

  17. V. G. Borisov, G. N. Nachinkina, B. V. Pavlov, and A. M. Shevchenko, ‘‘The unified technique for multimode flight control systems designing,’’ IFAC Proc. Volumes 43 (15), 25–30 (1999). https://doi.org/10.3182/20100906-5-jp-2022.00006

  18. V. G. Borisov, G. N. Nachinkina, and A. M. Shevchenko, ‘‘Modal method for optimizing the energy flight control of aircraft,’’ Probl. Upr., No. 6, 74–80 (2008).

  19. A. M. Shevchenko, ‘‘Energy-based approach for flight control systems design,’’ Autom. Remote Control 74, 372–384 (2013). https://doi.org/10.1134/s0005117913030041

    Article  MathSciNet  Google Scholar 

  20. P. F. Lambrechts, J. C. Terlouw, J. T. M. van Doorn, et al., ‘‘Robust flight control design challenge problem formulation and manual: The research civil aircraft model (RCAM),’’ Technical Publication TP-088-3 (Group for Aeronautical Research and Technology in Europe GARTEUR-FM (AG08), 1997).

  21. Robust Flight Control: A Design Challenge, Ed. by J.-F. Magni, S. Bennani, and J. Terlouw, Lexture Notes in Control and Information Sciences, Vol. 224 (Springer, Berlin, 1997). https://doi.org/10.1007/bfb0113842

  22. R. S. Russell, ‘‘Non-linear F-16 simulation using Simulink and Matlab,’’ Technical Report (University of Minnesota, 2003).

    Google Scholar 

  23. L. Sonneveldt, ‘‘Nonlinear F-16 model description,’’ Technical Report (Delft University of Technology, Delft, The Netherlands, 2006).

    Google Scholar 

  24. L. T. Nguyen, M. E. Ogburn, and W. P. Gilbert, ‘‘Simulator study of stall/post-stall characteristics of a fighter airplane with relaxed longitudinal static stability,’’ NASA Technical Paper 1538 (1979).

  25. H. V. De Castro, ‘‘Flying and handling qualities of a fly-by-wire blended-wing-body civil transport aircraft,’’ PhD Thesis (Cranfield Univ., 2003).

  26. T. Peterson and P. Grant, ‘‘Handling qualities of a blended wing body aircraft,’’ MSc Thesis (Institute for Aerospace Studies, Univ. of Toronto, Toronto, 2011).

  27. S. A. Belokon, D. S. Derishev, Yu. N. Zolotukhin, K. Yu. Kotov, and A. S. Maltsev, ‘‘Mobile software and hardware complex for flight experiments,’’ Optoelectron., Instrum. Data Process. 57, 338–344 (2021). https://doi.org/10.3103/S8756699021040038

    Article  ADS  Google Scholar 

  28. Aviation rules, Part 25: Airworthiness codes of transport aircraft (Int. Civil Aviation Association, 2009).

  29. S. A. Belokon’, Yu. N. Zolotukhin, and M. N. Filippov, ‘‘Architecture of a platform for hardware-in-the-loop simulation of flying vehicle control systems,’’ Optoelectron., Instrum. Data Process. 53, 345–350 (2017). https://doi.org/10.3103/S8756699017040057

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (state registration no. 121042900050-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Belokon.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Translated by L. Trubitsyna

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belokon, S.A., Zolotukhin, Y.N., Kotov, K.Y. et al. Total Energy Control of Aircraft Longitudinal Motion. Optoelectron.Instrument.Proc. 59, 580–591 (2023). https://doi.org/10.3103/S8756699023050011

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699023050011

Keywords:

Navigation