Skip to main content
Log in

Optical Gates Based on Semiconductor Quantum Wells A\({}_{\mathbf{3}}\)B\({}_{\mathbf{5}}\)

  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

The influence of the structure of quantum wells and the features of their manufacturing technology on the performance and maximum modulation depth of optical gates based on quantum wells A\({}_{3}\)B\({}_{5}\), designed for mode locking of near-IR lasers, is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, ‘‘Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,’’ IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996). https://doi.org/10.1109/2944.571743

    Article  ADS  Google Scholar 

  2. A. A. Kovalyov, ‘‘Measuring the reflective spectra in a one-beam scheme, Instrum. Exp. Tech. 63, 842–845 (2020). https://doi.org/10.1134/S0020441220060093

    Article  Google Scholar 

  3. G. M. Borisov, V. G. Gol’dort, A. A. Kovalyov, D. V. Ledovskikh, and N. N. Rubtsova, ‘‘A technique for detecting subpicosecond reflection or transmission kinetics,’’ Instrum. Exp. Tech. 61, 94–98 (2018). https://doi.org/10.1134/S0020441218010025

    Article  Google Scholar 

  4. N. N. Rubtsova, A. A. Kovalyov, D. V. Ledovskikh, V. V. Preobrazhenskii, M. A. Putyato, B. R. Semyagin, S. A. Kuznetsov, V. S. Pivtsov, and A. V. Semenko, ‘‘Optical shutters for a compact femtosecond Yb:KYW laser,’’ Laser Phys. 30, 025001 (2020). https://doi.org/10.1088/1555-6611/ab5946

    Article  ADS  Google Scholar 

  5. N. N. Rubtsova, G. M. Borisov, A. A. Kovalyov, D. V. Ledovskikh, V. V. Preobrazhenskii, M. A. Putyato, B. R. Semyagin, S. A. Kuznetsov, and V. S. Pivtsov, ‘‘Properties of quantum wells and their application in femtosecond laser operating in near IR range with sub GHz pulse repetition rate,’’ Optoelectron., Instrum. Data Process. 56, 527–532 (2020). https://doi.org/10.3103/S875669902005009X

    Article  ADS  Google Scholar 

  6. A. Ishibashi, Y. Mari, F. Nakamura, and N. Watanabe, ‘‘Optical properties of quantum wells with ultrathin-layer superlattice barriers,’’ J. Appl. Phys. 59, 2503 (1986). https://doi.org/10.1063/1.336996

    Article  ADS  Google Scholar 

  7. R. Samti, F. Raouafi, M. Chaouach, M. Maaref, A. Sakri, J. Even, J.-M. Gerard, and J.-M. Jancu, ‘‘Optical properties of ultrathin InAs quantum-well-heterostructures,’’ Appl. Phys. Lett. 101, 012105 (2012). https://doi.org/10.1063/1.4731783

    Article  ADS  Google Scholar 

  8. D. Bayerl, S. M. Islam, C. M. Jones, V. Protasenko, D. Jena, and E. Kioupakis, ‘‘Deep ultraviolet emission from ultra-thin GaN/AlN heterostructures,’’ Appl. Phys. Lett. 109, 241102 (2016). https://doi.org/10.1063/1.4971968

    Article  ADS  Google Scholar 

  9. S. M. Islam, V. Protasenko, K. Lee, S. Rouvimov, J. Verma, H. Xing, and D. Jena, ‘‘High efficiency deep-UV emission at 219 nm from ultrathin MBE GaN/AlN quantum heterostructures’’ (2017). arXiv:1704.08737

  10. P. Y. Yu and M. Cardona, Fundamentals of Semiconductors, Physics and Materials Properties (Springer, Heidelberg, 2002).

Download references

Funding

The work was supported by the Russian Foundation for Basic Research (grant no. 18-29-20007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Rubtsova.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubtsova, N.N., Kovalev, A.A., Ledovskikh, D.V. et al. Optical Gates Based on Semiconductor Quantum Wells A\({}_{\mathbf{3}}\)B\({}_{\mathbf{5}}\). Optoelectron.Instrument.Proc. 57, 468–475 (2021). https://doi.org/10.3103/S8756699021050137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699021050137

Keywords:

Navigation