Skip to main content
Log in

Single Photon Detectors Based on InP/InGaAs/InP Avalanche Photodiodes

  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

The design and fabrication of a single photon detector based on InP/InGaAs/InP single-photon avalanche diodes (SPADs) operating in Geiger mode at a telecommunication wavelength of 1550 nm are discussed. The SPAD design, the method for obtaining InP/InGaAs/InP heterostructures by molecular beam epitaxy, fabrication of SPAD chips using planar technology, and specific features of selective zinc doping of \(p\)-regions in the InP layer of the developed electronic circuits for measuring main SPAD parameters are described. Preliminary results of measurements of the parameters of the fabricated SPADs are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. W. K. Wooters and W. H. Zurek, ‘‘A single quantum cannot be cloned,’’ Nature. 299, 802–803 (1982). https://doi.org/10.1038/299802a0

    Article  ADS  MATH  Google Scholar 

  2. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, ‘‘Quantum cryptography,’’ Rev. Mod. Phys. 74, 145–175 (2002). https://doi.org/10.1103/RevModPhys.74.145

    Article  ADS  MATH  Google Scholar 

  3. I. I. Ryabtsev, I. I. Beterov, D. B. Tretyakov, V. M. Entin, V. L. Kurochkin, A. V. Zverev, and I. G. Neizvestny, ‘‘Experimental quantum information with single atoms and photons,’’ Herald Russ. Acad. Sci. 83, 336–344 (2013). https://doi.org/10.1134/S1019331613040047

    Article  Google Scholar 

  4. I. I. Ryabtsev, D. B. Tretyakov, A. V. Kolyako, A. S. Pleshkov, V. M. Entin, I. G. Neizvestny, A. V. Latyshev, and A. L. Aseev, ‘‘Element base of quantum informatics II: Qunatum communications with single photons, Russ. Microelectron. 46, 121–130 (2007). https://doi.org/10.1134/S1063739717020093

    Article  Google Scholar 

  5. ID Quantique (IDQ), 2021. http://www.idquantique.com. Cited August 4, 2021.

  6. G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, ‘‘Picosecond superconducting single-photon optical detector,’’ Appl. Phys. Lett. 79, 705–707 (2001). https://doi.org/10.1063/1.1388868

    Article  ADS  Google Scholar 

  7. WOORIRO Co., Ltd. http://www.wooriro.com. Cited August 4, 2021.

  8. Y. Liu, S. R. Forrest, J. Hladky, M. J. Lange, G. H. Olsen, and D. E. Ackey, ‘‘A planar InP/InGaAs avalanche photodiode with floating guard ring and double diffused junction,’’ J. Lightwave Technol. 10, 182–193 (1992). https://doi.org/10.1109/50.120573

    Article  ADS  Google Scholar 

  9. S. Pellegrini, ‘‘InGaAs/InP single-photon avalanche diodes,’’ PhD Thesis (Heriot-Watt Univ., Edinburgh, 2005).

  10. M. A. Itzler, X. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, ‘‘Advances in InGaAsP-based avalanche diode single photon detectors,’’ J. Mod. Opt. 58, 174–200 (2011). https://doi.org/10.1080/09500340.2010.547262

    Article  ADS  Google Scholar 

  11. J. Ma, B. Bai, L.-J. Wang, C.-Z. Tong, G. Jin, J. Zhang, and J.-W. Pan, ‘‘Design considerations of high-performance InP/InGaAs/InP single-photon avalanche diodes for quantum key distribution,’’ Appl. Opt. 55, 7497–7502 (2016). https://doi.org/10.1364/AO.55.007497

    Article  ADS  Google Scholar 

  12. L. C. Comandar, B. Frohlich, J. F. Dynes, A. W. Sharpe, M. Lucamarini, Z. L. Yuan, R. V. Penty, and A. J. Shields, ‘‘Gigahertz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55\(\%\) at 1550 nm,’’ J. Appl. Phys. 117, 083109 (2015). https://doi.org/10.1063/1.4913527

    Article  ADS  Google Scholar 

  13. F. Acerbi, M. Anti, A. Tosi, and F. Zappa, ‘‘Design criteria for InGaAs/InP single-photon avalanche diode,’’ IEEE Photon. J. 5, 6800209 (2013). https://doi.org/10.1109/JPHOT.2013.2258664

    Article  ADS  Google Scholar 

  14. K. Lee and K. Yang, ‘‘Analysis of InGaAs/InP single-photon avalanche diodes with the multiplication width variation,’’ IEEE Photon. Technol. Lett. 26, 999–1002 (2014). https://doi.org/10.1109/LPT.2014.2312022

    Article  ADS  Google Scholar 

  15. M. A. Putyato, Yu. B. Bolkhovityanov, S. I. Chikichev, D. F. Feklin, A. M. Gilinsky, A. K. Gutakovskii, V. V. Preobrazhenskii, M. A. Revenko, B. R. Semyagin, and K. D. Chtcherbatchev, ‘‘InP decomposition phosphorus beam source for MBE: Design, properties and superlattice growth,’’ Semicond. Sci. Technol. 18, 417–422 (2003). https://doi.org/10.1088/0268-1242/18/6/304

    Article  ADS  Google Scholar 

  16. M. A. Putyato, V. V. Preobrazhenskii, B. R. Semyagin, Yu. B. Bolkhovityanov, A. M. Gilinsky, A. K. Gutakovsky, M. A. Revenko, O. P. Pchelyakov, and D. F. Feklin, ‘‘InGaAsP/InGaP superlattices by conventional MBE with molten metal solution phosphorus source,’’ J. Cryst. Growth. 247, 23–27 (2003). https://doi.org/10.1016/S0022-0248(02)01909-7

    Article  ADS  Google Scholar 

  17. V. V. Preobrazhenskii, M. A. Putyato, and B. R. Semyagin, ‘‘Measurements of parameters of the low-temperature molecular-beam epitaxy of GaAs,’’ Semiconductors 36, 837–840 (2002). https://doi.org/10.1134/1.1500455

    Article  ADS  Google Scholar 

  18. M. O. Petrushkov, M. A. Putyato, E. A. Emelyanov, V. V. Preobrazhenskij, B. R. Semyagin, D. F. Feklin, and A. A. Vasev, ‘‘Method of zinc doping substrates or layers of indium phosphide,’’ RF Patent No. 2686523, Byull. Izobret., No. 13 (2019).

  19. M. O. Petrushkov, M. A. Putyato, I. B. Chistokhin, B. R. Semyagin, E. A. Emel’yanov, M. Yu. Esin, T. A. Gavrilova, A. V. Vasev, and V. V. Preobrazhenskii, ‘‘Zinc diffusion into InP via a narrow gap from a planar Zn\({}_{3}\)P\({}_{2}\)-based source, Tech. Phys. Lett. 44, 612–614 (2018). https://doi.org/10.1134/S1063785018070258

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation, project no. 075-15-2020-797 (13.1902.21.0024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Preobrazhenskii.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Pismenov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Preobrazhenskii, V.V., Chistokhin, I.B., Putyato, M.A. et al. Single Photon Detectors Based on InP/InGaAs/InP Avalanche Photodiodes. Optoelectron.Instrument.Proc. 57, 485–493 (2021). https://doi.org/10.3103/S8756699021050125

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699021050125

Keywords:

Navigation