Skip to main content
Log in

Light Emission by Monolayers of Molybdenum Disulfide

  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

A comprehensive study of molybdenum disulfide monolayers formed on a silicon substrate is carried out using Raman scattering (RS), photoluminescence (PL), and by comparison with the data of atomic force microscopy (AFM). Maps of the intensity distribution of exciton PL and Raman scattering by optical phonons from monolayer MoS\({}_{2}\) films are obtained. The dependences of the frequencies of the fundamental vibrational modes of MoS\({}_{2}\) (A\({}_{\textrm{1g}}\) and E\({}_{\textrm{2g}}\)) on the thickness of monolayer coatings are obtained. An enhancement of the Raman mode of the optical phonon of silicon by a bilayer of molybdenum disulfide is found. A hypothesis on the interference enhancement of Raman scattering of light by phonon modes of silicon is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. E. Gourmelon, O. Lignier, H. Hadouda, G. Couturier, J. C. Bernede, J. Tedd, J. Pouzet, and J. Salardenne, ‘‘MS\({}_{2}\) (M = W, Mo) photosensitive thin films for solar cells,’’ Sol. Energy Mater. Sol. Cells 46, 115–121 (1997). https://doi.org/10.1016/S0927-0248(96)00096-7

    Article  Google Scholar 

  2. Y. Y. Peter and M. Cardona, ‘‘Electronic band structures,’’ in Fundamentals of Semiconductors, Graduate Texts in Physics (Springer, Berlin, 2010), pp. 17–106. https://doi.org/10.1007/978-3-642-00710-1_2

  3. M. J. Hostetler, J. E. Wingate, Ch.-J. Zhong, J. E. Harris, R. W. Vachet, M. R. Clark, J. D. Londono, S. J. Green, J. J. Stokes, G. D. Wignall, G. L. Glish, M. D. Porter, N. D. Evans, and R. W. Murray, ‘‘Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: Core and monolayer properties as a function of core size,’’ Langmuir 14, 17–30 (1998). https://doi.org/10.1021/la970588w

    Article  Google Scholar 

  4. J. He, K. Hummer, and C. Franchini, ‘‘Stacking effects on the electronic and optical properties of bilayer transition metal dichalcogenides MoS\({}_{2}\), MoSe\({}_{2}\), WS\({}_{2}\), and WSe\({}_{2}\),’’ Phys. Rev. B 89, 075409 (2014). https://doi.org/10.1103/PhysRevB.89.075409

    Article  ADS  Google Scholar 

  5. A. Molina-Sanchez, K. Hummer, and L. Wirtz, ‘‘Vibrational and optical properties of MoS\({}_{2}\): From monolayer to bulk,’’ Surf. Sci. Rep. 70, 554–586 (2015). https://doi.org/10.1016/j.surfrep.2015.10.001

    Article  ADS  Google Scholar 

  6. A. Splendiani, L. Sun, Yu. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, ‘‘Emerging photoluminescence in monolayer MoS\({}_{2}\),’’ Nano Lett. 10, 1271–1275 (2010). https://doi.org/10.1021/nl903868w

    Article  ADS  Google Scholar 

  7. X. Luo, Ya. Zhao, J. Zhang, Q. Xiong, and S. Y. Quek, ‘‘Anomalous frequency trends in MoS\({}_{2}\) thin films attributed to surface effects,’’ Phys. Rev. B 88, 075320 (2013). https://doi.org/10.1103/PhysRevB.88.075320

    Article  ADS  Google Scholar 

  8. N. Saigal, I. Wielert, D. Capeta, N. Vujicic, B. V. Senkovskiy, M. Hell, M. Kralj, and A. Gruneis, ‘‘Effect of lithium doping on the optical properties of monolayer MoS\({}_{2}\),’’ Appl. Phys. Lett. 112, 121902 (2018). https://doi.org/10.1063/1.5021629

    Article  ADS  Google Scholar 

  9. H. Li, Q. Zhang, Ch. Ch. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, and D. Baillargeat, ‘‘From bulk to monolayer MoS\({}_{2}\): Evolution of Raman scattering,’’ Adv. Funct. Mater. 22, 1385–1390 (2012). https://doi.org/10.1002/adfm.201102111

    Article  Google Scholar 

  10. D. Solonenko, O. D. Gordan, A. Milekhin, M. Panholzer, K. Hingerl, and D. R. T. Zahn, ‘‘Interference-enhanced Raman scattering of F\({}_{16}\)CuPc thin films,’’ J. Phys. D: Appl. Phys. 49, 115502 (2016). https://doi.org/10.1088/0022-3727/49/11/115502

    Article  ADS  Google Scholar 

  11. R. J. Nemanich, C. C. Tsai, and G. A. N. Connell, ‘‘Interference-enhanced Raman scattering of very thin titanium and titanium oxide films,’’ Phys. Rev. Lett. 44, 273–276 (1980). https://doi.org/10.1103/PhysRevLett.44.273

    Article  ADS  Google Scholar 

  12. D. Yoon, H. Moon, Y.-W. Sonet, J. S. Choi, B. H. Park, Y. H. Cha, Y. D. Kim, and H. Cheong, ‘‘Interference effect on Raman spectrum of graphene on SiO\({}_{2}\)/Si,’’ Phys. Rev. B. 80, 125422 (2009). https://doi.org/10.1103/PhysRevB.80.125422

    Article  ADS  Google Scholar 

  13. A. G. Milekhin, N. A. Yeryukov, L. L. Sveshnikova, T. A. Duda, E. R. Rodyakina, V. A. Gridchin, E. S. Sheremet, and D. R. T. Zahn, ‘‘Combination of surface- and interface-enhanced Raman scattering by CuS nanocrystals on nanopatterned Au structures,’’ Beilstein J. Nanotechnol. 2015. 6, 749–754. https://doi.org/10.3762/bjnano.6.77

    Article  Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research (project no. 19-52-12041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Marchenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marchenko, A.V., Kurus, N.N., Kolosvetov, A.A. et al. Light Emission by Monolayers of Molybdenum Disulfide. Optoelectron.Instrument.Proc. 57, 532–538 (2021). https://doi.org/10.3103/S8756699021050101

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699021050101

Keywords:

Navigation