Skip to main content
Log in

Characterization of Crystal Perfection in the Layers of (013)HgCdTe/CdTe/ZnTe/GaAs Heterostructures via the Second Harmonic Generation Method

  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

The processes of second harmonic generation in the CdTe and Hg\({}_{1-x}\)Cd\({}_{x}\)Te layers and GaAs substrate of the Hg\({}_{1-x}\)Cd\({}_{x}\)Te /CdTe/ZnTe/GaAs heterostructure of orientation (013) have been analyzed. The azimuthal dependence of second harmonic signals have been measured in comparison with the calculated data obtained via the numerical simulation of an ideal crystal of specified orientation near cut (013). It has been shown that the substrate and epitaxial layers after growing have an orientation plane reversal of +8 and -3 angular degrees from ideal plane (013) for the GaAs substrates and up to 8 angular degrees from the substrate orientation for the MCT layers with a weak dependence on the composition along the thickness. The observed orientation plane reversals depend on the mismatch between the lattice parameters of conjugated materials in the Hg\({}_{1-x}\)Cd\({}_{x}\)Te/CdTe/ZnTe/GaAs heterostructure. A detected increase of noise at the minima of the azimuthal dependence of a second harmonic signal in the Hg\({}_{1-x}\)Cd\({}_{x}\)Te layers is caused by the presence of disoriented microareas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. S. A. Akhmanov, V. I. Emel’yanov, N. I. Koroteev, and V. V. Seminogov, ‘‘Interaction of powerful laser radiation with the surfaces of semiconductors and metals: nonlinear optical effects and nonlinear optical diagnostics,’’ Sov. Phys. Usp. 147, 675–745 (1985). https://doi.org/10.1070/PU1985v028n12ABEH003986

    Article  Google Scholar 

  2. T. F. Heinz, ‘‘Second-order nonlinear optical effects at surfaces and interfaces,’’ Mod. Probl. Condens. Matter Sci. 29, 353–416 (1991). https://doi.org/10.1016/B978-0-444-88359-9.50011-9

    Article  Google Scholar 

  3. T. Kimura and Ch. Yamada, ‘‘In-situ second-harmonic generation study of the molecular beam epitaxy growth of GaAs,’’ J. Crystal Growth 150, 92–95 (1995).

    Article  ADS  Google Scholar 

  4. K. A. Brekhov, K. A. Grishunin, D. V. Afanas’ev, S. V. Semin, N. E. Sherstyuk, E. D. Mishina, and A. V. Kimel, ‘‘Optical second harmonic generation and its photoinduced dynamics in ferroelectric semiconductor Sn\({}_{2}\)P\({}_{2}\)S\({}_{6}\),’’ Phys. Solid State 60, 31–36 (2018). https://doi.org/10.1134/S1063783418010080

    Article  ADS  Google Scholar 

  5. V. V. Balanyuk, V. F. Krasnov, S. L. Musher, V. I. Prots, V. E. Ryabchenko, S. A. Stoyanov, S. G. Struts, M. F. Stupak, and V. S. Syskin, ‘‘Determination of local crystal quality characteristics and of the orientation of CdTe semiconductor films by nonlinear optical methods,’’ Quantum Electron. 22, 196–200 (1995).

    Google Scholar 

  6. G. M. Borisov, V. G. Gol’dort, A. A. Kovalyov, S. A. Kochubei, D. V. Ledovskokh, V. V. Preobrazhenskii, M. A. Putyato, N. N. Rubtsova, and B. R. Semyagin, ‘‘Specific features of second harmonic generation of femtosecond Yb\({}^{3+}\):KY(WO4)2 laser radiation in heterostructures A3B5 with asymmetric quantum wells,’’ Vestn. Novosibirsk. Gos. Univ. Ser.: Fiz. 9 (4), 5–14 (2014).

    Google Scholar 

  7. G. M. Borisov, V. G. Gol’dort, K. S. Zhuravlev, A. A. Kovalyov, S. A. Kochubei, D. V. Ledovskikh, T. V. Malin, and N. N. Rubtsova, ‘‘Second harmonic generation in Al\({}_{0,1}\)Ga\({}_{0,9}\)N thin film,’’ Sib. Fiz. Zh. 13 (2), 64–69 (2018). https://doi.org/10.25205/2541-9447-2018-13-2-64-69

    Article  Google Scholar 

  8. S. B. Bodrov, A. I. Korytin, Yu. A. Sergeev, and A. N. Stepanov, ‘‘Second-harmonic generation in zinc blende crystals under combined action of femtosecond optical and strong terahertz fields,’’ Quantum Electron. 50, 496–501 (2020). https://doi.org/10.1070/QEL17185

    Article  ADS  Google Scholar 

  9. I. D. Burlakov, A. V. Demin, G. G. Levin, N. A. Piskunov, S. V. Zabotnov, and A. S. Kashuba, ‘‘Measurement of intensity of the second optical harmonic in heteroepitaxial cadmium-mercury telluride structures,’’ Meas. Tech. 53, 615–619 (2010). https://doi.org/10.1007/s11018-010-9550-6

    Article  Google Scholar 

  10. E. V. Permikina and A. S. Kashuba, ‘‘Properties of the passivating CdTe film deposited on a HgCdTe epilayer,’’ Usp. Prikl. Fiz. 4, 493–499 (2016).

    Google Scholar 

  11. M. F. Stupak, N. N. Mikhailov, S. A. Dvoretskii, and M. V. Yakushev, ‘‘Express characterization of crystalline perfection of Cd\({}_{x}\)Hg\({}_{1-x}\)Te structures by reflection second harmonic generation of probing radiation,’’ Optoelectron., Instrum. Data Process. 55, 447–454 (2019). https://doi.org/10.3103/S8756699019050054

    Article  ADS  Google Scholar 

  12. M. F. Stupak, N. N. Mikhailov, S. A. Dvoretskii, M. V. Yakushev, D. G. Ikusov, S. N. Makarov, A. G. Elesin, and A. G. Verkhoglyad, ‘‘Possibilities of characterizing the crystal parameters of Hg\({}_{1-x}\)Cd\({}_{x}\)Te structures on GaAs substrates by the method of generation of the probe-radiation second harmonic in reflection geometry,’’ Phys. Solid State 62, 252–259 (2020). https://doi.org/10.1134/S1063783420020201

    Article  ADS  Google Scholar 

  13. S. L. Musher, M. F. Stupak, and B. S. Syskin, ‘‘The use of phase matching as the null method for scanning bulk deformation fields in semiconductor materials,’’ Quantum Electron. 26, 743–745 (1996). https://doi.org/10.1070/QE1996v026n08ABEH000768

    Article  ADS  Google Scholar 

  14. A. Rogalski, ‘‘HgCdTe infrared detector material: History, status, and outlook,’’ Rep. Prog. Phys. 68, 2267 (2005). https://doi.org/10.1088/0034-4885/68/10/R01

    Article  ADS  Google Scholar 

  15. Yu. G. Sidorov, S. A. Dvoretskii, V. S. Varavin, N. N. Mikhailov, M. V. Yakushev, and I. V. Sabinina, ‘‘Molecular-beam epitaxy of mercury-cadmium-telluride solid solutions on alternative substrates,’’ Semiconductors 35, 1045–1053 (2001). https://doi.org/10.1134/1.1403569

    Article  ADS  Google Scholar 

  16. Yu. G. Sidorov, M. V. Yakushev, and A. V. Kolesnikov, ‘‘Dislocations in CdTe heteroepitaxial structures on GaAs(301) and Si(301) substrates,’’ Optoelectron., Instrum. Data Process. 50, 234–240 (2014). https://doi.org/10.3103/S8756699014030030

    Article  Google Scholar 

  17. Yu. G. Sidorov, M. V. Yakushev, V. S. Varavin, A. V. Kolesnikov, E. M. Trukhanov, I. V. Sabinina, and I. D. Loshkarev, ‘‘Density of dislocations in HgCdTe heteroepitaxial structures on GaAs(013) and Si(013) substrates,’’ Phys. Solid State 57, 2151–2158 (2015). https://doi.org/10.1134/S1063783415110311

    Article  ADS  Google Scholar 

  18. D. Chandra, H. D. Shih, F. Aqariden, R. Dat, S. Gutzler, M. J. Bevan, and T. Orent, ‘‘Formation and control of defects during molecular beam epitaxial growth of HgCdTe,’’ J. Electron. Mater. 27, 640–647 (1998). https://doi.org/10.1007/s11664-998-0028-0

    Article  ADS  Google Scholar 

  19. L. He, Y. Wu, L. Chen, S. L. Wang, M. F. Yu, Y. M. Qiao, J. R. Yang, Y. J. Li, R. J. Ding, and Q. Y. Zhang, ‘‘Composition control and surface defects of MBE-grown HgCdTe,’’ J. Cryst. Growth 227–228, 677–682 (2001). https://doi.org/10.1016/S0022-0248(01)00801-6

    Article  ADS  Google Scholar 

  20. J. D. Benson, L. O. Bubulac, P. J. Smith, R. N. Jacobs, J. K. Markunas, M. Jaime-Vasquez, L. A. Almeida, A. J. Stoltz, P. S. Wijewarnasuriya, G. Brill, Y. Chen, U. Lee, M. F. Vilela, J. Peterson, S. M. Johnson, D. D. Lofgreen, D. Rhiger, E. A. Patten, and P. M. Goetz, ‘‘Characterization of dislocations in (112)B HgCdTe/CdTe/Si,’’ J. Electron. Mater. 39, 1080–1086 (2010). https://doi.org/10.1007/s11664-010-1262-9

    Article  ADS  Google Scholar 

  21. V. I. Gavrilenko, A. M. Grekhov, D. V. Korbutyak, and V. G. Litovchenko, Optical Properties of Semiconductors (Naukova Dumka, Kiev, 1987).

    Google Scholar 

  22. Handbook of Optical Constants of Solids, Ed. by E. D. Palik (Elsevier, San Diego, Calif., 1998).

    Google Scholar 

  23. S. Adachi, Optical Constants of Crystalline and Amorphous Semiconductors (Springer, New York, 1999). https://doi.org/10.1007/978-1-4615-5247-5

  24. E. D. Mishina, T. V. Misuryaev, N. E. Sherstyuk, V. V. Lemanov, A. I. Morozov, A. S. Sigov, and Th. Rasing, ‘‘Observation of a near-surface structural phase transition in SrTiO\({}_{3}\) by optical second harmonic generation,’’ Phys. Rev. Lett. 85, 3664–3667 (2000). https://doi.org/10.1103/PhysRevLett.85.3664

    Article  ADS  Google Scholar 

  25. E. D. Mishina, A. I. Morozov, A. S. Sigov, N. E. Sherstyuk, O. A. Aktsipetrov, V. V. Lemanov, and Th. Rasing, ‘‘A study of the structural phase transition in strontium titanate single crystal by coherent and incoherent second optical harmonic generation,’’ J. Exp. Theor. Phys. 94, 552–567 (2002). https://doi.org/10.1134/1.1469155

    Article  ADS  Google Scholar 

  26. L. Mennel, M. M. Furchi, S. Wachter, M. Paur, D. K. Polyushkin, and T. Mueller, ‘‘Optical imaging of strain in two-dimensional crystals,’’ Nat. Commun. 9, 516 (2018). https://doi.org/10.1038/s41467-018-02830-y

    Article  ADS  Google Scholar 

Download references

Funding

This study was financially supported in part by the Russian Foundation for Basic Research (project no. 18-29-20053) and the Ministry of Science and Higher Education of the Russian Federation (state registration no. AAAA-A20-120102190007-5).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. A. Dvoretskii or M. F. Stupak.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dvoretskii, S.A., Stupak, M.F., Mikhailov, N.N. et al. Characterization of Crystal Perfection in the Layers of (013)HgCdTe/CdTe/ZnTe/GaAs Heterostructures via the Second Harmonic Generation Method. Optoelectron.Instrument.Proc. 57, 458–467 (2021). https://doi.org/10.3103/S8756699021050058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699021050058

Keywords:

Navigation