Skip to main content
Log in

Mechanisms of the Oxides Removal from the InP Surface under Annealing in an Arsenic Flux

  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

The surface transformation mechanisms upon annealing of epi-ready InP(001) substrates in the molecules arsenic flux were studied in situ by reflection high-speed electron diffraction (RHEED). The effect of the annealing temperature and arsenic flux rate on the removal of oxides from the InP surface as a result of thermal decomposition and chemical interaction of oxides with arsenic was studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

REFERENCES

  1. R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, S. Corzine, S. Hurtt, A. Dentai, S. Murthy, M. Missey, R. Muthiah, R. A. Salvatore, C. Joyner, R. Schneider, M. Ziari, F. Kish, and D. Welch, ‘‘InP photonic integrated circuits,’’ IEEE J. Sel. Top. Quantum Electron. 16, 1113–1125 (2010). https://doi.org/10.1109/JSTQE.2009.2037828

    Article  ADS  Google Scholar 

  2. M. Smit, K. Williams, and J. van der Tol, ‘‘Past, present, and future of InP-based photonic integration,’’ APL Photon. 4, 050901 (2019). https://doi.org/10.1063/1.5087862

    Article  ADS  Google Scholar 

  3. S. Lee, M. Winslow, C. H. Grein, S. H. Kodati, A. H. Jones, D. R. Fink, P. Das, M. M. Hayat, T. J. Ronningen, J. C. Campbell, and S. Krishna, ‘‘Engineering of impact ionization characteristics in In\({}_{0.53}\)Ga\({}_{0.47}\)As/Al\({}_{0.48}\)In\({}_{0.52}\)As superlattice avalanche photodiodes on InP substrate,’’ Sci. Rep. 10, 16735 (2020). https://doi.org/10.1038/s41598-020-73810-w

    Article  Google Scholar 

  4. J. Massies and J. P. Contour, ‘‘Substrate chemical etching prior to molecular beam epitaxy: An X-ray photoelectron spectroscopy study of GaAs {001} surfaces etched by the H\({}_{2}\)SO\({}_{4}\):H\({}_{2}\)O\({}_{2}\):H\({}_{2}\)O solution,’’ J. Appl. Phys. 58, 806–810 (1985). https://doi.org/10.1063/1.336175

    Article  ADS  Google Scholar 

  5. D. V. Dmitriev, N. A. Valisheva, A. M. Gilinsky, and I. Chistokhin, ‘‘InAlAs/InGaAs/InP heterostructures for microwave photodiodes grown by molecular beam epitaxy,’’ IOP Conf. Ser.: Mater. Sci. Eng. 475, 012022 (2019). https://doi.org/10.1088/1757-899X/475/1/012022

  6. W. M. Lau, R. N. S. Sodhi, and S. Ingrey, ‘‘Thermal desorption of oxides on InP,’’ Appl. Phys. Lett. 52, 386 (1988). https://doi.org/10.1063/1.99474

    Article  ADS  Google Scholar 

  7. R. F. C. Farrow, ‘‘Stabilization of surfaces of III-V compound crystals by molecular beams,’’ J. Phys. D: Appl. Phys. 8, N 7, 87–89 (1975). https://doi.org/10.1088/0022-3727/8/7/001

    Article  ADS  Google Scholar 

  8. R. Averbeck, H. Riechert, H. Schlötterer, and G. Weimann, ‘‘Oxide desorption from InP under stabilizing pressures of P\({}_{2}\) or As\({}_{4}\),’’ Appl. Phys. Lett. 59, 1732–1734 (1991). https://doi.org/10.1063/1.106233

    Article  ADS  Google Scholar 

  9. G. J. Davies and R. Heckingbottom, ‘‘Arsenic stabilization of InP substrates for growth of Ga\({}_{x}\)In\({}_{1-x}\)As layers by molecular beam epitaxy,’’ Appl. Phys. Lett. 37, 290–292 (1980). https://doi.org/10.1063/1.91910

    Article  ADS  Google Scholar 

  10. A. Y. Lew, C. H. Yan, K. B. Welstand, J. T. Zhu, C. W. Tu, P. K. L. Yu, and E. T. Yu, ‘‘Interface structure in arsenide/phosphide heterostructure grown by gas-source MBE and low-pressure MOVPE,’’ J. Electron. Mater. 26, 64–69 (1997). https://doi.org/10.1007/s11664-997-0089-5

    Article  ADS  Google Scholar 

  11. J. M. Moison, M. Bensoussan, and F. Houzay, ‘‘Epitaxial regrowth of an InAs surface on InP: An example of artificial surfaces,’’ Phys. Rev. B 34, 2018 (1986). https://doi.org/10.1103/PhysRevB.34.2018

    Article  ADS  Google Scholar 

  12. G. Hollinger, D. Gallet, M. Gendry, C. Santinelli, and P. Viktorovich, ‘‘Structural and chemical properties of InAs layers grown on InP (100) surfaces by arsenic stabilization,’’ J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 8, 832–837 (1990). https://doi.org/10.1116/1.584974

    Article  Google Scholar 

  13. C. H. Li, L. Li, D. C. Law, S. B. Visbeck, and R. F. Hicks, ‘‘Arsenic adsorption and exchange with phosphorus on indium phosphide (001),’’ Phys. Rev. B 65, 205322 (2002). https://doi.org/10.1103/PhysRevB.65.205322

    Article  ADS  Google Scholar 

  14. D. V. Dmitriev, I. A. Mitrofanov, D. A. Kolosovsky, A. I. Toropov, and K. S. Zhuravlev, ‘‘Removal of oxides from the surface (001)InP in ultra-high vacuum in an Arsenic flux,’’ 21st Int. Conf. of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM), Chemal, Russia, 2020 (IEEE, 2020), pp. 5–8. https://doi.org/10.1109/EDM49804.2020.9153517

  15. D. V. Dmitriev, D. A. Kolosovsky, T. A. Gavrilova, A. K. Gutakovskii, A. I. Toropov, and K. S. Zhuravlev, ‘‘Transformation of the InP(001) surface upon annealing in an arsenic flux,’’ Surf. Sci. 710, 121861 (2021). https://doi.org/10.1016/j.susc.2021.121861

    Article  Google Scholar 

  16. Q.-K. Xue, T. Hashizume, and T. Sakurai, ‘‘Scanning tunneling microscopy of III-V compound semiconductor (001) surfaces,’’ Prog. Surf. Sci. 56 (1–2), 1–131 (1997). https://doi.org/10.1016/S0079-6816(97)00033-6

    Article  ADS  Google Scholar 

  17. S. Katsura, Y. Sugiyama, O. Oda, and M. Tacano, ‘‘Aging-free InP substrates ready for molecular beam epitaxial growth of InAlAs/InGaAs heterostructures,’’ Appl. Phys. Lett. 62, 1910–1912 (1993). https://doi.org/10.1063/1.109540

    Article  ADS  Google Scholar 

  18. G. Hollinger, E. Bergignat, J. Joseph, and Y. Robach, ‘‘On the nature of oxides on InP surfaces,’’ J. Vac. Sci. Technol., A 3, 2082–2088 (1985). https://doi.org/10.1116/1.572928

    Article  ADS  Google Scholar 

  19. C. W. Wilmsen, ‘‘Chemical composition and formation of thermal and anodic oxides/III-V compound semiconductor interfaces,’’ J. Vac. Sci. Technol. 19, 279 (1981). https://doi.org/10.1116/1.571118

    Article  ADS  Google Scholar 

  20. D. V. Dmitriev, D. A. Kolosovsky, E. V. Fedosenko, A. I. Toropov, and K. S. Zhuravlev, ‘‘Substitution of phosphorus at the InP(001) surface upon annealing in an arsenic flux,’’ Semiconductors 55, 1152–1156 (2021). https://doi.org/10.1134/S1063782621100080

    Article  Google Scholar 

  21. V. A. Rabinovich and Z. Ya. Khavin, Brief Chemical Reference Book (Khimiya, Leningrad, 1977).

    Google Scholar 

  22. A. I. Busev, Analytical Chemistry of Indium (Akad. Nauk SSSR, Moscow, 1958).

    Google Scholar 

  23. B. A. Joyce and D. D. Vvedensky, ‘‘Self-organized growth on GaAs surfaces,’’ Mater. Sci. Eng. R. 46, 127–176 (2004). https://doi.org/10.1016/j.mser.2004.10.001

    Article  Google Scholar 

  24. K. P. Mishchenko and A. A. Ravdelya, Brief Reference Book of Physicochemical Values (Khimiya, Leningrad, 1974).

    Google Scholar 

  25. R. A. Lidin, L. L. Andreeva, and V. A. Molochko, Constants of Inorganic Substances (Drofa, Moscow, 2006).

    Google Scholar 

  26. Y. Sun, Zh. Liu, F. Machuca, P. Pianetta, and W. E. Spicer, ‘‘Preparation of clean InP 100 surfaces studied by synchrotron radiation photoemission,’’ J. Vac. Sci. Technol., A 21, 219 (2003). https://doi.org/10.1116/1.1532738

    Article  ADS  Google Scholar 

  27. H. Bando, H. Yoshino, H. Okamoto, and K. Iizuka, ‘‘Phosphorous-beam free InP substrate cleaning for MBE,’’ J. Cryst. Growth 278, 464–467 (2005). https://doi.org/10.1016/j.jcrysgro.2005.01.028

    Article  ADS  Google Scholar 

  28. A. D. Zimon, Physical Chemistry, (Agar, Moscow, 2003).

    Google Scholar 

Download references

Funding

This study was performed within the state task to the Rzhanov Institute of Semiconductor Physics (Siberian Branch, Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Dmitriev.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dmitriev, D.V., Kolosovsky, D.A., Toporov, A.I. et al. Mechanisms of the Oxides Removal from the InP Surface under Annealing in an Arsenic Flux. Optoelectron.Instrument.Proc. 57, 451–457 (2021). https://doi.org/10.3103/S8756699021050046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699021050046

Keywords:

Navigation