Skip to main content
Log in

Comparison of Accuracy in the Determination of Optical Vortex Coordinates by Different Methods

  • COMPUTATIONAL AND DATA ACQUISITION SYSTEMS
  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

Two algorithms for the determination of optical vortex coordinates are considered. In the first one, the vortex is found by branching of interference pattern fringes; in the second one, as a result of processing of the wavefront gradient distribution. It is shown that both algorithms allow one to record the coordinates with a high accuracy; in addition, it is possible to determine shifts of singular points appearing as a result of radiation diffraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. D. L. Fried, ‘‘Branch point problem in adaptive optics,’’ J. Opt. Soc. Am. A 10, 2759–2767 (1998). https://doi.org/10.1364/JOSAA.15.002759

    Article  ADS  MathSciNet  Google Scholar 

  2. J. Wu, H. Li, and Y. Li, ‘‘Encoding information as orbital angular momentum states of light for wireless optical communications,’’ Opt. Eng. 1. 019701 (2007). https://doi.org/10.1117/1.2431800

  3. J. Ng, Zh. Lin, and C. T. Chan, ‘‘Theory of optical trapping by an optical vortex beam,’’ Phys. Rev. Lett. 104, 103601 (2010). https://doi.org/10.1103/PhysRevLett.104.103601

  4. K. T. Gahagan and G. A. Swartzlander, ‘‘Trapping of low-index microparticles in an optical vortex,’’ J. Opt. Soc. Am. B 15, 524–534 (1998). https://doi.org/10.1364/JOSAB.15.000524

    Article  ADS  Google Scholar 

  5. A. G. White, C. P. Smith, N. R. Heckenberg, H. Rubinsztein-Dunlop, R. McDuff, C. O. Weiss, and Ch. Tamm, ‘‘Interferometric measurements of phase singularities in the output of a visible laser,’’ J. Mod. Opt. 38, 2531–2541 (1991). https://doi.org/10.1080/09500349114552651

    Article  ADS  Google Scholar 

  6. B. Khajavi, R. G. Ureta, Jr., and E. J. Galvez, ‘‘Determining vortex-beam superpositions by shear interferometry,’’ Photonics 5, 16 (2018). https://doi.org/10.3390/photonics5030016

    Article  Google Scholar 

  7. V. Yu. Venediktov, ‘‘Progress in approaches for determining topological charge of vortex optical beams,’’ in Tezisy Dokl. XXV Conf. Aerozoli Sibiri, Tomsk, Russia, 2018, p. 119.

  8. K. Patorski and K. Pokorski, ‘‘Examination of singular scalar light fields using wavelet processing of fork fringes,’’ Appl. Opt. 50, 773–781 (2011). https://doi.org/10.1364/AO.50.000773

    Article  ADS  Google Scholar 

  9. F. Yu. Kanev, V. P. Aksenov, F. A. Starikov, Yu. V. Dolgopolov, A. V. Kopalkin, I. D. Veretekhin, and V. E. Zuev, ‘‘Detection of an optical vortex topological charge and coordinates by analyzing branches of an interference pattern,’’ Opt. Atmos. Okeana 32 (8), 620–627. https://doi.org/10.15372/AOO20190803

  10. X. Li, Y. Tai, F. Lv, and Zh. Nie, ‘‘Measuring the fractional topological charge of LG beams by using interference intensity analysis,’’ Opt. Commun. 334, 235–239 (2015). https://doi.org/10.1016/j.optcom.2014.08.020

    Article  ADS  Google Scholar 

  11. H. I. Sztul and R. R. Alfano, ‘‘Double-slit interference with Laguerre–Gaussian beams,’’ Opt. Lett. 31, 999–1001 (2006). https://doi.org/10.1364/OL.31.000999

    Article  ADS  Google Scholar 

  12. M. Chen and F. S. Roux, ‘‘Dipole influence on Shack–Hartmann vortex detection in scintillated beams,’’ J. Opt. Soc. Am. A 25, 1084–1090 (2008). https://doi.org/10.1364/JOSAA.25.001084

    Article  ADS  Google Scholar 

  13. H. Huang, J. Luo, Y. Matsui, H. Toyoda, and T. Inoue, ‘‘Eight-connected contour method for accurate position detection of optical vortices using Shack–Hartmann wavefront sensor,’’ Opt. Eng. 54, 111302 (2015). https://doi.org/10.1117/1.OE.54.11.111302

  14. F. Yu. Kanev, V. P. Aksenov, and I. D. Veretekhin, ‘‘Registration of optical vortices by the Shack–Hartmann sensor,’’ Vestn. RFFI, No. 4, 8–10 (2018). https://doi.org/10.22204/2410-4639-2018-100-04-8-10

  15. F. Yu. Kanev, V. P. Aksenov, N. A. Makenova, F. A. Starikov, Yu. V. Dolgopolov, A. V. Kopalkin, and I. D. Veretekhin ‘‘Detection of an optical vortex topological charge and coordinates,’’ Proc. SPIE 10833, 108331J (2018). https://doi.org/10.1117/12.2504323

  16. F. Yu. Kanev and V. P. Lukin, Adaptive Optics. Numerical and Experimental Studies (Sib. Otd., Ross. Akad. Nauk, Tomsk, 2005).

    Google Scholar 

  17. V. P. Aksenov, I. V. Izmailov, F. Yu. Kanev, and F. A. Starikov, ‘‘Algorithms for the reconstruction of the singular wave front of laser radiation: analysis and improvement of accuracy,’’ Quantum Electron. 38, 673–677 (2008). https://doi.org/10.1070/QE2008v038n07ABEH013652

    Article  ADS  Google Scholar 

Download references

Funding

This work was carried out within the framework of Project II.10.3.5 ‘‘Development of Methods and Systems of Adaptive Correction for the Formation of Coherent Beams and Optical Images in the Atmosphere’’ (registration no. AAAA-A17-117021310146-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Makenova.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanev, F.Y., Aksenov, V.P., Makenova, N.A. et al. Comparison of Accuracy in the Determination of Optical Vortex Coordinates by Different Methods. Optoelectron.Instrument.Proc. 56, 221–227 (2020). https://doi.org/10.3103/S8756699020030061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699020030061

Keywords:

Navigation